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Abstract
In this paper we consider an optimal control problem for an
inhomogeneous Heat equation. We transfer the problem into a
moment problem. Then this moment problem is changed to
measure theoretic control problem, and the new problem is
converted to an infinite dimensional linear programming
problem. Finally we approximate the infinite dimensional linear
programming problem to a finite dimensional one and the
solution to this problem is used to find a piecewise constant
control for the original problem.
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1. Statement of the problem
Let us consider the following problem:

1.1
?‡

?�
P( x t

t
c P( x t b x u t, ) , ) ( ) ( )?¨ ?¨ ?¨2 2

TtQx ≤≤∈ 0,0

1.2 ( ) ( )xFxP =0, Qx∈
1.3 ( ) 0, =txP TtQx ≤≤∂∈ 0,
where Q is a n-cell in n-dimensional Euclidean space R n (for
n=1,2), with interior Q° and boundary ∂Q is the boundary of Q,
u(.) is a scalar valued control function, 2∇ is the Laplacian
operator, 2c is a constant, F(.) is a measurable function, and b(.)
is continuous on Q.
The control function u(.) will be admissible if it is a measurable
function on J=[0,T] and,
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1: It takes values in the set [-1,1] for t∈ [0,T],
2: The solution of the system (1.1)-(1.3) corresponding to this
control function, that is P u (x,t) , satisfies the terminal
condition :
1.4 ( ) ( )xGTxPu =, Qx∈
where () ( )QLG 2∈⋅ is the desired final state We assume that the
set of all admissible controls is nonempty and denote it by U.
Our optimal control problem consists of finding a control
() Uu ∈⋅ which minimizes the functional:

1.5 ( ) ()( )∫=
T

dttutfuJ
0

,,0

where ( ) ( )ΩΩ∈ CCf ,0 is the space of all continuous functions
on Ω = × −[ , ] [ , ]0 11T with the uniform topology. In the following
we replace the above problem with another one in which we
introduce an approximate piecewise constant optimal control by
using measure theory.

A boundary controllability theory for hyperbolic and
parabolic partial differential equations has been studied and
some results have been obtained (Fattorini & Russell,1971;
Kamyad,1992). Some authors used measure theory to solve
boundary optimal control problem for the diffusion equation
(Kamyad et al., 1992). Also, in 1996, Farahi et al., solved a
boundary optimal control problem of a homogenous linear wave
equation by using measure theory (Farahi et al., 1996a,1996b).
Recently Alavi et al., (Alavi et al., 1998) used measure theory
and found an optimal control of inhomogeneous wave problem
with internal control.

2. Obtaining moment problem
Let ( )QH 1 denote the usual Sobolev space on Q, i.e.,

( ) { ffQH :1 = and ( )}QLf 2∈′ ,
and define

( ) ( ){ 0:1 =∈= xfQHfV for }Qx ∂∈ .
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Also, let () ( ),, tPty ⋅= then we may write equations (1.1)-(1.3)
as:
2.1 () () ()tbutAyty +=′ ,, VyJt ∈∈
2.2 ( ) .0 0yy =

where ( )xFy =0 and A is a sectorial operator defined by
?n?n 22∇= cA with domain V. Then we may write the solution

of (2.1)-(2.2) as

2.3 () () ( ) ( )∫ −+=
t

dbutSytSty
00 ?‡?C?C ,Jt∈

where S(t) is a semigroup generated by the operator A
(Banks,1983).
Now let the eigenvalues and eigenfunctions of the operator A
be given as follows:

( ) ( )xexAe nnn ?‡−= ,
( ) 0=xen , ,Qx ∂∈ ,...;2,1=n

Let the expansion of ( ) ( )QLxh 2∈ in terms of eigenfunction be

( ) ( ),
1∑ ∞

=
=

n nn xehxh then we can write the semigroup S(t) as:

S t h h e e xn
t

n n
n( ) ( ).?… ?‡

?4

?�?‡ ?‡
1

Therefore, by (2.3) the solution of (2.1)-(2.2) is of the following
form:

2.4 () ( ) ( ) ( )∑ ∫
∞

=

−−−





 +=

1
0

,
n

n

t t
n

t
n xeduebeFty nn ?‡?ã?‡?C?C

where nF and nb are respectively the Fourier coefficients of
( )xF and ( )xb .

Since ( ) ()tytxP =, , so by (2.4) the solution of the system
(1.1)-(1.3) can be written as:

2.5 ( ) ( ) ( ) ( )xedtuebeFtxP n
n

t t
n

t
n

nn∑ ∫
∞

=

−−−





 +=

1
0

, ?t?‡?Ô?Ô

Let the expansion of ( )xG , in terms of eigenfunctions be
( ) ( )∑ ∞

=
=

1
;

n nn xeGxG
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By (1.4) and (2.5) we must find a control function u such that
satisfies the following conditions:

( ) ()∫ =+ −−− T

n
tT

n
T

n GdttuebeF nn

0

?(?(
. ,...2,1=n

Assume in the Fourier series, ( ) ( )∑ ≠= 0, nnn bxebxb , then the

above relation can be written as:

2.6
( ) () ( )∫ −−− −=

T T
nn

n

tT nn eFG
b

dttue
0

1 ?‡?ð
.

,....2,1=n
Now let

2.7 ( ) ( ) ()tueut tT
n

n −−= ?‡?‡ , , ( )T
nn

n
n

neFG
b

a ?‡−−=
1 , ,...2,1=n

Hence, we must find a control function () [ ]1,1: −→⋅ Ju such
that:

2.8 ?‡n
t

nt u dt a
0
?‡ ?‡( , ) ,...,2,1=n

and minimizes the functional (1.5). We call this problem an
optimal moment problem, and consider it in the next section.

3. Modified optimal moment problem
Now we replace the above moment minimization problem with
another one as follow:
1: For a fixed control function () Uu ∈⋅ , the mapping

3.1 ?‡u
t

F F t u dt: ( , ) ,?K?‡
0

, ( )Ω∈∀ CF ,

defines a positive linear functional on ( )ΩC .
2: By the Riesz representation theorem, there exists a unique
positive Radon measure u?‡on Ω such that

3.2 ?‡u u u

t

F Fd F:( ) ( )?è ?è?‡ ?‡ ?è
0

( )Ω∈∀ CF .
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This measure u?‡is required to have certain properties which are
abstracted from the definition of admissible controls. First by
(3.2)

?‡u F T F t u( ) ( , ) ,sup≤
Ω

hence
() Tu ≤1?a .

Next, by (2.8) we have
?‡ ?gu n na( ) = ,....2,1=n

Finally, consider functions () ( )Ω∈⋅ CH which do not depend
on u, we have

Hd H t u t dt aH

T
?‡= =∫∫ ( , ( )) ,

0
Ω

where Ha is the Lebesgue integral of H. let ( )Ω+M be the set of
positive Radon measures on Ω . The set 0Q is defined as a
subset of ( )Ω+M such that :

3210 SSSQ ΙΙ=
where,

( ) () }{ TMS ≤Ω∈= + 1:1 ?‡?
 ,
( ) ( ) }{ ,...2,1,:2 ==Ω∈= + naMS nn?‡?ê?ê ,
( ) ( ) ( ){ Ω∈=Ω∈= + CHaHMS H ,:3 ?‡?º

and H is independent of }u .
So the new optimization problem consists of minimizing the
linear functional

RQI →0: defined by

( ) ∫Ω= ?†?† dfI 0

over the set 0Q .
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Proposition 3.1
The measure-theoretical control problem, which consist of
finding the minimum of the functional I over the set 0Q , attains
its minimum, say *?‡, in 0Q (Rubio, 1986).

4. Approximation of the optimal control by a piecewise
constant control
Corresponding to each piecewise constant admissible control
()⋅u , we may associate a measure u?‡, in ( ) 21 SSM ΙΙΩ+ . Let

1Q be the set of all such measures u?‡. When the space ( )Ω+M ,
has the week * -topology, 1Q is dense in

( ) 21 SSM ΙΙΩ+ (Theorem 1 of Ghouila-Houri, 1967). A

basis of closed neighborhood in the week * - topology is given
by sets of the form
4.1 ( ) }{ 1,...,2,1,; +=≤∈ knH n?‡?� ,

where k is an integer ( )1,...,2,1, +=Ω∈ knCH n , and 0≥?þ . In

any week * - neighborhood of *?‡(the minimizing measure), we
can find a measure u?‡, corresponding to a piecewise control
function ()⋅u . In particular we can put

kkHHHfH ?9?9?9 ==== +1231201 ,...,,, ;
then we can find a piecewise constant control ()⋅ku , such that

( ) ( ) ?‡?H ≤−∫
T

k fdtutf
0 0

*
0 ,

4.2 ( ) ?‡?Ó ≤−∫
T

nkn adtut
0

, .,...,2,1 kn =

Therefore, by using the piecewise constant control ()⋅ku , we
can reach within ?‡of the minimum value ( )0

* f?â .
Now, we analyze the relation between the desired final state
()⋅G and ( )TPk ,⋅ for the one-dimension state, ( )TPk ,⋅ is the
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final state attained by using the control ()tuk ). Let [ ]LQ ,0= ,
where L is a fixed positive real number; in this case, the
eigenfunctions and the corresponding eigenvalues of the

operator 2

2
2

x
cA
∂
∂

= are as

4.3 





= x

L
nen
?‡sin Qx∈

4.4
2







=

L
cn

n
?‡?3 ,...2,1=n

Now we can show that if ?‡is chosen small enough, and k
large enough, the distance between ()⋅G and ( )TPk ,⋅ in ( )QL2

can be made as small as desired.

Proposition 4.1
Given 0≥?� , we may choose k and ?‡such that

4.5 ( ) ( )[ ]∫ ≤−
L

k dxxGTxP
0

2, ?ª

Proof
Without loss of generality, we assume that 1,1 === LTc .
Thus by (2.5) and (4.3)-(4.4) we have

( ) ( ) ( )( ) () ( )∑ ∫
∞

=




 −−+−=

1

1

0

2222 sin1expexp1,
n

knnk ndttutnbnFxP ?š?š?š?š

.
Let

( ) ( )( ) ()∫ −−+−=
1

0

2222 1expexp dttutnbnF knnn ?‡?�?� , ,...,2,1=n

the Fourier coefficients n?‡ of ( )1,⋅kP , satisfy

4.6 ( ) ( )( )∫ −−+−≤
1

0

2222 1expexp dttnbnF nnn ?‡?a?a ,...2,1=n

2222 ?‡?Ï n
b

n
F nn +≤ .
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Since nF and nb are respectively, the Fourier coefficients of
()⋅F and ()⋅b , then for the same integer 1k , when 1kn ≥ , we

have 1≤nF and 1≤nb . Thus

22

2
?Þ

?*
nn ≤ .

Also, since the desired final state ( ) ( )∑= ?Q?QnGxG n sin is

reachable by an admissible control, nG satisfies the same

inequality as n?‡ . Thus,

( ) ( )[ ] ( ) ( )∫ ∑ ∑
=

∞

+=

−+−=−
L k

n kn
nnnnk GbGdxxGTxP

0
1 1

222

2
1

2
1, ?. ,

where for 1kk ≥ ,

( )∑ ∑
∞

+=

∞

+=

≤−
1 1

44
2 116

kn kn
nn n

G
?;

?Ž

Since the last summation in this expression is the tail of a
convergent series we may choose k such that 1kk ≥ and

4.7 ( )∑
∞

+=

≤−
1

2

2kn
nn G ?A?Æ .

Also, we choose
kb
?ý?‚

02
1

= , where [ ] ( )xbb x 1,00 sup2 ∈= . In

the neighborhood defined by choosing ?‡and k as above, there
exists a ?îu corresponding to a piecewise constant control ()⋅ku
for which we have (4.2). Thus by (2.7) we can write

( ) exp( ) exp( ( )) ( )?‡ ?‡ ?‡nn

k

n n n k n

l

n

kG F n b n t u t dt G?‡ ?Q?‡ ?]?l?‡ ?‡ ?‡ ?‡ ?‡ ?‡ ?‡?ã
?õ?F

?ã
?õ?F1

2 2 2 2 2

0
1

2

1

?‡ ?} ?} ?}?‡ ?C?‡ ?O ?O?bb t u dt a b t u dt ann

k

n k n

l

n k n

l

n

k2
1

0

2
0
2

0
1

2

( ( , ) ) ( , )?} ?}

by (4.2) we have

4.8 ( )∑
=

≤≤−
k

n
nn kbG

1

22
0

2 ?‡?•
2
?�.



Optimal control of an inhomogeneous …
ººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººººº

ÓÔ

Therefore by (4.7)-(4.8) we have

( ) ( )[ ] ( ) ( )∫ ∑ ∑
=

∞

+=

=+≤−+−=−
1

0
1 1

222

22
,

k

n kn
nnnnk FFdxxFTxP ?o?¨?¨?o?o

5. Approximation of the optimal measure
Now we develop a method for the estimation of a nearly-
optimal piecewise constant control. In this method we follow
Kamyad et al., (1991). First we obtain an approximate value of
the optimal measure ∗?‡. Let ( )21, MMQ be the set of measures
in ( )Ω+M satisfying

5.1
()
( )
( )








==
==

≤

2

1

,...,2,1,
,...,2,1,

1

MnaH
Mna

T

nHn

nn

?‡
?µ?µ

?E

Define ( )( )0, 21 fMMQ
∗?‡ as

( )( ) ( ) ( ){ }2100, ,:min21 MMQffMMQ ∈=∗ ?‡?¾?¾ ,
then

( )( ) ( )00,
, 21

21

lim ffMMQ
MM

∗∗

∞→
= ?¬?¬

(see Proposition 3.1 in Kamyad et al., 1992).
The set [ ] [ ]1,1,0 −×=Ω T will be covered with a grid, by taking

11 +m and 12 +m points along the t-axis and u-axis,

respectively. These points will be equidistant, at distances
1m

T

and
2

2
m

, each separately in the order mentioned. Now Ω is

divided to 21.mmN = equal rectangles ,,...,2,1, Njj =Ω we
choose points jjZ Ω∈ and let

{ }NjZ j ,...,2,1; ==?— .

Now let ( ) NRMMP ⊆?X,, 21 be the set of all ( )N?‡?X?X ,...,, 21

defined by:
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( )
( )












=≤−

=≤−

=≥

∑

∑

=

=

21

11

,...,2,1,

,...,2,1,

,...,2,1,0

MiaZH

MiaZ

Nj

N

j Hjij

N

j ijij

j

i
?‡?4

?�?�?�

?Õ

we can write the following proposition:

Proposition 5.1
For every 0≥?R , the problem of minimizing the function

( )∑ =
∈

N

j jjj ZZf
1 0 , ?Â?Â , on the set ( )?‡,, 21 MMP , has a solution

for ( )?‡NN = sufficiently large. the solution satisfies

( )( ) ( ) ( ) ( )( )∑
=

∗∗ +≤≤+
N

j
MMQjjMMQ fZff

1
000, 2121 ?‡?S?S?S?S?S

where ( )?‡?z tends to zero as ?‡tends to zero.

Proof
The proof is the same as that of the Theorem III (Rubio1986).
Thus we can compute ( )( )0, 21 fMMQ

∗?‡ (the approximate value of
( )0f

∗?‡ ), where in fact ( )( )0, 21 fMMQ
∗?‡ is the approximate

solution of the following linear programming problem:
Minimize

( )∑
=

N

j
jj Zf

1
0?‡

subject to:

5.2

?‡

?�?�

?§

?� ?� ?�

j

j i j jj

N

j i j Hj

N

Q M M j j j
j

N

j

N

j N

Z a i M

H Z a i M

Z T

j

?‡ ?W

?� ?�

?§ ?§

?� ?� ?�

?C

?Ê

?‡
?Ë?\

?P

?�
?Q
?•

?‡

?f

?g?g

?‡
?ˆ

?â?â

0 12

12

12

1 1

11

21

11
1 2

, , ,...,

( ) , , ,...,

( ) , , ,...,

( ) ( ) .( , )
*

or
Minimize
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5.3 ( )∑
+

=

1

1
0

N

j
jj Zf?Ø

over the set of coefficient 1,...,2,1,0 +=≥ Njj?‡ , such that

5.4
?‡?�

?S

?€

j i j jj

N

j i j Hj

N

j
j

N

Z a i M

H Z a i M

T

j

( ) , , ,...,

( ) , , ,...,

?� ?�

?S ?S

?€

?^

?D

?�
?¢?•

?*

?æ
?ˆ
?G

?‡

?<

?5

?•

?5

?Ú

?‡
?F

?s

12

12
11

1

21

1

1

1

We used one slack variable 1+N?‡ , to put the last inequality in
(5.2) in the equality form.

Remark
If ∑ =

=
N

j j T
1
?‡ then 01 =+N?‡ . Also we choose

( ) 2,...,2,1,, MiutH i = as follows:

( )


 ∈

=
otherwise

Jt
utH i

i ,0
,1

,

where ( ) ,,...,2,1,,1
1

11

mi
m
iT

m
TiJ i =







 −
= so:

( )∫ ==
T

iH m
TdtutHa

i 0
1

, .

Now by using the solution of the finite dimensional linear
programming (5.3)-(5.4), we can construct an approximate
control function. Let ( ) NnutZ nnn ,...,2,1,, == to each n we
can attribute a pair (i,j) as follows :

( ) ijmn +−= 11 ,1 1mi ≤≤ 21 mj ≤≤ ,
assume nijK ?þ= . We define a piecewise-constant control as:
5.5 () nutu = ijBt ∈

where
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5.6 B t K t Kij i ij i ij
l jl j

?‡ ?Á ?Á?�
?u?¶

?�
?u?¶?‡ ?¥

?g?g
?‡?°1 1, ..

Since those intervals ijB for which 0=ijK are reduced to a
point, they do not contribute anything to intervals and so can be
ignored. By using the piecewise-constant control we can

compute the final state ( )TxP , .

Example 5.1
Consider the heat equation with internal control
5.7 ( ) ( ) ()txutxPtxP xxt += ,, ( ) ( ) ( )4.0,01,0, ×=Ω∈tx

with the following initial and boundary conditions:

5.8
( ) ( )
( ) ( )




≤≤==
≤≤−=

4.00,0,1,0
10,100, 2

ttPtP
xxxxP

We are going to construct the optimal control function
() [ ] [ ]1,14.0,0: −→⋅u , such that the solution of the system (5.7)-

(5.8) corresponding to this control function satisfies the
following desired final condition:

( ) 04.0, =xP [ ]1,0∈x ,
and, minimizes the functional
5.9 ( ) ()∫=

2

0
dttuuJ .

We assume 20,10 21 == MM , 2021 ==mm , so the set
[ ] [ ]1,14.0,0 −×=Ω is divided to 400=N subrectangles. Also,

we define ( ) 400,...,2,1,, == iutZ iii , as
01.002.0... 2020220120 +==== +++ ittt iii 19,...,2,1,0=i

1
19
2... 381211 −==== +++ iuuu iii 19,...,2,1,0=i
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So, the linear programming problem (5.3)-(5.4) changes to the
following problem:
Minimize

∑
=

400

1j
jj u?�

subject to:

( )














=++







=

≥

+++

=

−
−−∑

02.0...
0

20

0

2020220120

400

1

4.0
224.0

22
22

iii

j

n

j
tn

j

j

e
nue j

?‡?Q?Q

?I?O

?X

?‡
?• ,

kn

kn

2

12

=

−=
,

19,...,2,1

10,...,2,1

400,...,2,1

=

=

=

i

n

j

In this example, the cost function converges to the value 0.0903.
The graph of the piecewise constant control function formed by
using the above method, can be seen in Figure 5.1. The initial and
final states are shown in Figure 5.2. We mention that ( )04,xP is
approximated by only the first four terms of the series (2.5), that is:
( ) ( ) ( ) ( ) ( )xxxxxP ?<?<?<?< 4sin0025.03sin0066.02sin0028.0sin0430.004, −+−=

Figure 5.1 – The nearly optimal control for Example 5.1.
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Figure 5.2 – Initial and final actual states for Example 5.1.

6. Optimal control for the two-dimensional inhomogeneous
heat equation

In this section let [ ] [ ]HLQ ,0,0 ×= where L and H are fixed
positive numbers; in this case, the eigenfunction and eigenvalues

of the operator 







∂
∂

+
∂
∂

= 2

2

2

2
2

xx
cA are as:

( ) 













=

H
yn

L
xm

LH
yxemn

?‡?� sinsin2, ,
22







+






=

H
n

L
m

mn
?‡?c?ì .

Therefore, we can write the solution of (1.1)-(1.3) as

6.1 P( x y t F e b e u dt e xmn
t

mn
t

t

nm
mn

mn mn, , ) ( ) ( )( )?‡ ?q?Õ
?Ð?(

?Õ
?Ð?(

?‡ ?Â ?Â

?à

?�

?à

?�

?‡?S?S ?‡ ?Â ?Â ?‡
011

Where mnb and mnF are respectively double Fourier sine
coefficients of functions ( )yxb , and ( )yxF , . So,by (2.6) we
must find a control function ()⋅u such that:

e u t dt
b

G F emn mnT t

mn

t

mn mn
T?Ù ?Ù ?Ù?‡ ?u?‡?‡ ?Ù( ) ( ) ( )1

0
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where mnG is double Fourier sine coefficients of function
( )yxG , . But, by the following correspondence

NNNf →×:
( ) ( ) knnm m =−→ − 122, 1 ,

the above relation can be written as the following from
( ) () ( )∫ −−− −=

T T
kk

k

tT kk eFG
b

dttue
0

1 ?‡?c
,...2,1=k

Therefore, by (2.7), we need to find a control function
() [ ] [ ]1,1,0: −→⋅ Tu such that satisfies in (2.8) and minimizes the

functional (1.5). This problem is an optimal moment problem,
and we considered it in the previous sections. We give an
example in two-dimensional system.

Example 6.1
Consider the two-dimensional inhomogeneous heat equation
6.2 ( ) ( ) ( ) ()txyutyxPtyxPtyxP yyxxt ++= ,,,,,,

for ( ) ( ) ( ) 





××∈

2
3,0,0,0,, ? ?¥?¥tyx , where the initial and

boundary conditions are:

6.3 p(x.y.0) = 0.2sin(x)sin(y) ( ) [ ] [ ]?‡?A ,0,0, ×=∈ Qyx
6.4 ( ) 00,, =yxPt ( ) Qyx ∈,

6.5 ( ) 00,, =yxP ( ) 




×∂∈

2
3,0,, ?�Qtyx .

We are going to construct the optimal control function

() [ ]1,1
2

3,0: −→



⋅

?�u , such that the solution of the system

(6.2), (6.5) corresponding to this control function, satisfies the
following desired final condition :

0
2

3,, =





 ?�yxP , ( ) Qyx ∈,
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and also, minimizes the functional

6.7 ( ) ∫= 2
3

0

2
?Í

dtuuJ .

Let 20,20,10 2121 ==== mmMM , thus 400=N . Also, we
select ( ) 400,...,2,1,, == iutZ iii , as

t t t ii i i20 1 20 2 20 20

3
40

1?‡ ?J ?J?‡ ?c ?c ?c ?c... ( ),?¢ 19,...,2,1,0=i

1
19
2... 381211 −==== +++ iuuu iii , 19,...,2,1,0=i .

So, the linear programming problem (5.3)-(5.4) changes to the
following problem:
Minimize

∑
=

400

1

2

i
iiu?/

subject, to,













=+++


−

=

≥

+++

=

−





 −−

∑
1.0...

0
05.0

0

2020220120

400

1

3
2

3

iii

j j

tn

j

j

eue
j

?‡?O?O

?�

?ø
?‡?ú

,

19,...,2,1
26,25,20,18,17,13,10,8,5

2
400,...,2,1

=
=
=
=

i
n
n
j

In this example the cost function takes the value of 0.0055. By
using of the solutions of this finite dimensional linear
programming problem and (5.5) we obtained an approximated
piecewise constant control function. Figure 6.1 shows this
control function. By (6.1) we can compute 








2
3,, ?‘yxP , the

initial and desired final states are shown in Figures 6.2-6.3. In
Figure 6.3, 








2
3,, ?ÞyxP is approximated by only the first eleven

terms of the series (6.1), that is:
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( ) ( ) ( ) ( )yxyxyxP ?Ú?Ú?Ú?Ú?� sin2sin0060.0sinsin0121.0
2

3,, −=







( ) ( ) ( ) ( ) ( ) ( )yxyxyx ?�?�?�?�?�?� sin3sin0037.02sin2sin0029.02sinsin0060.0 ++−
( ) ( ) ( ) ( ) ( ) ( )yxyxyx ?ž?ž?ž?ž?ž?ž 3sin2sin0017.02sin3sin0017.03sinsin0037.0 −−+
( ) ( ) ( ) ( ) ( ) ( )yxyxyx ?%?%?%?%?%?% 3sin3sin0010.04sinsin0023.0sin4sin0023.0 +−−

Figure 6.1- The nearly optimal control for Example 6.1.

Figure 6.2- Initial state for Example 6.1.
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Figure 6.3- Final state actually achived for Example 6.1.
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