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Abstract
The aim of this paper is to construct an algebraic hyperstructure over a
set G corresponding to a Boolean algebra B and a function S:G→ B. In
order to accomplish this goal we will need to define a hyperoperation

*
s

on the set G. We define,

a *
s

b ={ }g G s g s a s b∈ ≤ ∨( ) ( ) ( )
and prove that if the image of G is a ∨-semilattice or constitute a

partition of 1 in B, then (G, *
s

) is a hypergroup.
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1. Introduction and Preliminaries
First of all we will recall some algebraic definitions that will be used in
the paper. A hyperstructure is a set H together with a function : H ?�H
?�P* (H) called hyperoperation, where P*(H) denotes the set of all
non-empty subsets of H. Marty (Marty,1934) defined a hypergroup as
a hyperstructure (H,.) such that the following axioms hold: (i)
(x.y).z?sx.(y.z) for all x.y, z in H, (ii) x.H=H.x=H for all x in H. (ii) is
called the reproduction axiom. A commutative hypergroup (H,o) is
called a join space if for all a,b,c,d ?¢H, the implication a/b ?¢c/d ?¢0
?¥ aod ?¥boc ?¥0 is valid, in which , a/b={ }x a xob∈ .

The concept of an Hv-group is introduced by Vougiouklis in
(Vougiouklis, 1994) and it is a hyperstructure (H,.) such that (i) (x.y).z
?° x.(y.z) ?°0, for all x, y,z in H, (ii) x.H=H.x = H for all x in H. The
first axiom is called weak associativity.
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The partition function p(n) is defined as the number of sequences
(a1, a2, ... , ar), 0<a1?‡a2?‡... ?�ar, that the positive integer n can be
written as a sum of positive integers, ai, as in n=a1+a2+...+ar. The
summands aj are called the parts of the partition. Also, ? (n) will
denote the set of all integer partitions of n and for every ?©?©?©(n) we
denote Part (?*) the set of positive integers aj such that a n

j j∑ = .

In this paper we construct some join space from Boolean algebras.
Our notations are standard and taken mainly from (Corsini, 1993) and
(Vougiouklis, 1994).

2. Construction of some Join Spaces
Let G be a set, B a Boolean algebra and s be a function from G into B.

We define the hyperoperation *
s

as follows:

a *
s

b = ?‡ ?
x G s x s a s b?� ?� ?�( ) ( ) ( )

Since for all x, y ?RG, { }x y, ?Rx *
s

y, hence (G, *
s

) is an Hv-group.

Also, it is obvious that the hyperoperation *
s

is commutative.

Example 1.
Suppose G= ?Œ(6), I(6)= = ?Œ1,2,...,6?Œand s: ?Œ(6) ?ŒP(I(6)) is

defined by s(?ž)=Part (?ž). In Table I, we compute all of integer
partitions of six. From this table we can see that :

(a *
s

d) *
s

i =?ua,b,c,d,e,f,i?uand a *
s

(d *
s

i )= ?ua,b,c,d,e,i?u.

Therefore, (a *
s

d) *
s

i?/a *
s

(d *
s

i ) and so (?/ (6), *
s

) is not a
hypergroup.

Some special cases where (G, *
s

) is a hypergroup are discussed in
the following results.

Proposition 2.

If the image G is a ∨-sub-semilattice of B then (G, *
s

) is a
commutative hypergroup.
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Table I - Integer partitions of 6
a 6=1+1+1+1+1+1 b 6=1+1+1+1+2
c 6=1+1+2+2 d 6=2+2+2
e 6=1+1+1+3 f 6=1+2+3
g 6=1+1+4 h 6=1+5
i 6=3+3 j 6=2+4
k 6=6

Proof.

Suppose y ?ú (a *
s

b) *
s

c, then there exists g ?úG such that
s(g) ?ƒs(a) ∨ s(b) and s(y) ?ƒs(g) ∨s(c). Therefore, s(y) ?ƒ(s(a)
∨s(b))∨s(c)=s(a) ∨(s(b) ∨s(c)). Since the image G is a ∨-sub-
semilattice of B, there exists t ?•G such that s(b) ∨s(c)=s(t) and so s(y)

?ñs(a) ∨s(t).Thus, y ?ña *
s

(b *
s

c), i.e. (a *
s

b) *
s

c ?ña *
s

(b *
s

c).

Similarly, we have a *
s

(b *
s

c) ?N(a *
s

b) *
s

c. Therefore, the
associative law is valid.

Lemma 3.
If the image G is a ?�-sub-semilattice then we have,

a1 *
s

a2 *
s

.... *
s

an ={ }g G s g s a s an∈ ≤ ∨ ∨( ) ( ) .... ( )1 .

Proof.

Suppose U=a1 *
s

a2 *
s

... *
s

an and
?‡ ?oV g G s g s a s an?‡ ?† ?† ?† ?†( ) ( ) ... ( )1 ,

then we must prove U=V. It is easy to see that U?nV. Suppose y?nV,
then s(y) ?€s(a1) ∨...∨s(an). Since the image G is a ∨-sub-semilattice of
B, hence there exists an element g ?‘ G such that
s(g) = s(a1) ∨…∨s(an-1). Using an inductive proof, we have

g?] a1 *
s

a2 *
s

.... *
s

an-1 and y?]g *
s

an. Therefore, y?]U and so V ?] U.
This completes the proof.
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Definition 4.
Let B=(B, ∨, ∧,0, 1) be a Boolean algebra. A subset X?�B is called a

partition of 1 if and only if,
1) For all x ?$X, x?$0,
2) 1=∨X,
3) For all x,y ?6X, x?6y, we have x ∧y=0.

For a Boolean algebra B, suppose A=Atom (B) is the set of all atoms
of B. By 25. 1 and 2 of (Sikorski, 1964), if B is a complete Boolean
algebra, B is a atomic if and only if it is completely distributive if and
only if it is the field of all subsets of the set of all atoms of B.
Therefore, the following lemma is true:

Lemma 5.
Let B=(B, ∨, ∧,?°,0, 1) be an atomic complete Boolean algebra and

A=Atom (B). An equivalence relation in the set A determines a
partition of 1 and conversely, a partition of 1 defines an equivalence
relation in A.

In fact the above lemma defines a one-to-one correspondence
between the set of all partitions of 1 and the set of all equivalence
relations on the set A.

Proposition 6.

If the image G is a partition of 1 then (G, *
s

) is a commutative
hypergroup.

Proof.
It is enough to show the associativity. Suppose a, b, c ?xG,

(a *
s

b) *
s

c={ }g G s g s a s b∈ ≤ ∨( ) ( ) ( ) *
s

c

= g c
s

s g s a s b
*

( ) ( ) ( )≤ ∨
U

Set, T={ }x G s x s a s b s c∈ ≤ ∨ ∨( ) ( ) ( ) ( ) . We now show that

T=(a *
s

b) *
s

c. It is easy to see that (a *
s

b) *
s

c ?lT. Suppose y ?lT,
then s(y) ?~s(a) ∨s(b) ∨s(c) and so s(y)=(s(y) ∧ s(a)) ∨(s(y) ∧ s(b))
∨(s(y) ∧s(c)). Now by hypothesis { }s g g G( ) ∈ is a partition of 1 and
our main proof will consider a number of cases.
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Case 1) s(y)=s(a) or s(y) ?ûs(a) and s(y) =s(b). In this case we
choose g = y and we have,

y ?çg *
s

c & s(g) = s(y) ?çs(a) ∨s(b).

Therefore, y ?C(a *
s

b) *
s

c.
Case 2) s(y) ?Ìs(a), s(y) ?Ìs(b) and s(y) = s(c). In this case we choose

g=a and we have,

y ?¸g *
s

c & s(g) = s(a) ? ş(a) ∨s(b).

Thus, y ?�(a *
s

b) *
s

c.
Case 3) s(y) ?žs(a), s(y) ?žs(b) and s(y) ?žs(c). In this case we have

s(y)=0 and so y ?ú(a *
s

b) *
s

c. Similarly, T=a *
s

(b *
s

c) and so

(a *
s

b) *
s

c=a *
s

(b *
s

c).

Lemma 7.
If the image G is a partition of 1 then we have,

a1 *
s

a2 *
s

... *
s

an={ }g G s g s a s an∈ ≤ ∨ ∨( ) ( ) ... ( )1

Proof.

Suppose a1 *
s

... *
s

an-1={ }g s g s a s an( ) ( ) .... ( )≤ ∨ −1 1 , then we have,

a1 *
s

.... *
s

an={ }g s g s a s an( ) ( ) .... ( )≤ ∨ −1 1 *
s

an

= g a
s

s g s a s a
n

n

*
( ) ( ) ... ( )≤ ∨ ∨ −1 1

U
= { }x G s x s g s an

s g s a s an

∈ ≤ ∨
≤ ∨ ∨ −

( ) ( ) ( )
( ) ( ) ... ( )1 1

U

Set, R=a1 *
s

... *
s

an and S={ }g G s g s a s an∈ ≤ ∨ ∨( ) ( ) ... ( )1 . It is
obvious that R ?‡S, so it is enough to show that S?‡R. Suppose x is an
arbitrary element of S, then s(x) ?™s(a1) ?™...∨s(an), and we have

s(x)=s(x) ∧(s(a1) ∨...∨(an)
= s(x) ∧ [s(a1) ∨...∨(an-1)] ∨[s(x) ∧ s(an)]
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If s(x)=s(an) then we choose g = a1 and we have,
s(g) ?�s(a1) ∨...∨s(an-1), so s(x) ?�s(g) ∨s(x) ?�s(a1) ∨...∨s(an). We now
assume that s(x)∧s(an) = 0, therefore s(x)=s(x) ∧ (s(a1) ∨...∨s(an-1).
Choose g=x and we have, s(x) ?�s(g) ∨s(an), so s(g)=s(x) ?�s(a1)
∨...∨s(an-1). This completes the proof.

Proposition 8.

If s is on to then (G, *
s

) is a join space.

Proof.

Suppose s is onto, then by proposition 2, (G, *
s

) is a hypergroup.

Choose an element t such that s(t)=0, then t ?�a *
s

d ?�b *
s

c, for all a,

b, c, d ?_H. Therefore, (G, *
s

) is a join space.

Lamma 9.

There exists a function s such that (G, *
s

) is a hypergroup but it is not
a join space.

Proof.
Suppose G is a Boolean algebra such that Atom (G) ?&4 and
s:G ?8 G defined by s(0)=1 and s(x) = x, for all x ?80. Since the image
G is a ∨-sub-semilattice of G then by proposition 2,

(G, *
s

) is a hypergroup. We now assume that a,b,c,d are distinct
atoms of G. It is clear that 1 ?�a/b ?� c/d and so

a/b ?Ï c/d ?Ï0. But a *
s

d=?Ïa,d,a ∨d?Ï and b *
s

c=?Ïa,c, b ∨c?Ï. If
a∨d=b∨c then a = a ∧ (a∨d) = a ∧ (b∨c)=(a ∧ b)∨(a ∧ c)=0 ∨0=0, a

contradiction. Therefore, (G, *
s

) is not a join space.

Proposition 10.

If the image G is a partition of 1 then (G, *
s

) is a join space.
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Proof.
Suppose the image of G is a partition of 1 and a, b, c, d ?�G, such that

a/b ?ac/d?a0. If s(a)=s(b) then a ?aa *
s

d ?ab *
s

c and if s(c)=s(d) then

c ?¾a *
s

d ?¾b *
s

c. Therefore, we can assume that s(a)?¾s(b) and
s(c) ?Gs(d). Now since the image G is a partition of 1, hence
a/b=s-1(s(a)) and c/d=s-1(s(c)). By assumption s-1(s(a) ?Ðs-1(s(c)) ?Ð0

and so s(a) = s(c), i.e., a ?-a *
s

d ?- b *
s

c, as required.
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