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Abstract
The objective of this study is a modeling in artificial neural networks
(ANN) and its generalization to predict reliable porosity values from log
data obtained from three wells in Khangiran gas field located in north-
east of Iran. We used a back-propagation ANN method (BP-ANN) to
predict porosity. The ANN  for porosity is a simple three-layer network
which uses sonic, density and resistivity logs for input. Porosity
predictions were then compared with log porosity which had been
derived from density and neutron logs. The results confirmed the
capability of using ANN.

Keywords: porosity, artificial neural network, wireline logs,
Khangiran, Mozduran.

Introduction
Initially, electric logs were used mostly for the determination of
formation tops and bottoms, and also for determining the oil-water
contact. Later, electric logs were used to evaluate most of the reservoir
properties such as porosity, permeability, fluid saturation, temperature,
reservoir pressures, type of formation and mineral identification.
Several studies imply that accurate evaluation of reservoir properties
can be made by analysis of electric logs (Hearst, 2000; Al-Qahtani,
2000; Helle et al., 2001). Characterizing a reservoir is a very complex
task, due to its inherent heterogeneity. Heterogeneous reservoirs are
known for the variation in their properties within a small area. Distinct
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geological ages, nature of rock, depositional environments are some of
the reasons behind the heterogeneity of a formation.

Artificial neural networks (ANN) are one of the latest technologies
available to the petroleum industry (Poulton, 2001). Porosity is a key
variable in characterizing a reservoir. Several relationships have been
offered which can relate porosity to wireline readings, such as sonic
transit time and density logs. However, the conversion from density and
transit time to equivalent porosity values is not trivial (Hearst, 2000).
We developed a network for prediction of porosity in Khangiran gas
field in north-east of Iran in a similar approach to that of Helle et al.
(2001). Mozduran formation (upper Jurassic carbonates) is the most
important pay zone in Khangiran anticline. Mozduran formation
contians three members. Upper and middle members of this formation
are dolomity and limydolomity types, respectively and lower member is
dolomylimstone (NIOC, Well completion report). The read data of logs
for Mozduran formation from three wells (KH#35, 36, 46) in this field
were selected for case study. At first, we studied the essence of neural
networks and tried to write program for back-propagation algorithm for
porosity network. Then, we trained this network with wireline data and
adjusted its parameters. Also, generalization of porosity network was
done for every well.

The Log Conversion
Porosity is one of the fundamental properties of reservoir rocks and it
is the measure of the void space in a rock (Hearst, 2000). Porosity
normally obtained either with wireline logs or by direct measurements
on core samples. Coring is one of the oldest and still practiced
technique. However, coring every well in a large field is a time
consuming practice and can be very expensive. Geophysical logs are
available for most of the wells, while cores and tests are available from
few wells in the reservoir. Therefore, the evaluation of porosity from
well log data is an important step to minimize cost (Hearst, 2000). In
this case study, sampling in Khangiran 35, 36, and 46 wells has been
done only for lithological studies and there isn’t any core for them
(NIOC, Well completion report). Better estimation of the porosity can
be obtained when the latest technology available is applied. The density
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and sonic logs do not directly measure the parameter with which it has
become associated, i.e. the porosity. From density and sonic logs the
porosities are given respectively, by
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where m?‡ , f?‡ and ?‡are the matrix density, fluid density and bulk
density, respectively. mt?• , ft?• and t?‹ are the sonic transit times of
the matrix material, the pore fluid and the rock, respectively (Wyllie,
Gregory and Gardner, 1956).

A single log cannot by itself resolve a petrophysical property (Helle
et al., 2001). Alternatively, a suite of different logs in combination may
be used to quantify a given petrophysical property provided its
relationship to the log readings can be established. Except for the
unknown values of the grain material and fluid properties, the porosity
can be expressed by linear functions of bulk density (equation 1) and
sonic transit time (equation 2). Because the sonic and density logs
respond differently to the fluid and grain material, and since they
constitute independent measurements of the same property, a
combination of two may improve the accuracy compared with that of
the log-to-porosity transform based on sonic or density alone.
Moreover, by adding the resistivity to suite of the logs, the accuracy of
the porosity transform may be further improved since resisitivity is
normally the best indicator for the type of pore fluid. In the following
sections we demonstrate that the sonic, density and resistivity
combined into an artificial neural network provide accurate porosity
estimations for any combination of grain material and pure fluid.
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In this case study, for training of the porosity network we selected
the target porosity ( tar?‡ ) from the combined density ( D?‡ ) and neutron
( N?‡ ) porosities as following:
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In this case study, based on drilling reports in Mozduran formation,
hydrocarbon effects have been considered as gas and condensate
(liquid gas) in KH#35 well. The KH#36 well contains gas and brine but
KH#46 well contains only brine (NIOC, Well completion report). We
calculated log porosity for every well in the pay zone (Mozduran
formation) using a constant matrix density of 2.85 g/cm3 (i.e.
limydolomite) and with different fluid densities of 0.25 and 0.75 and
1.03 g/cm3 for gas, oil and brine, respectively and then we compared
their responses together (figure 1). As can be seen from figure (1), the
comparison between porosity curves for different situations of brine,
oil and gas saturation shows that the porosity curve for oil saturation
lies between two other curves. Because of the gas effect on the
estimated porosities of two logs and the presence of brine and
condensate in the reservoir, we selected the target porosity from the
curve obtained by oil saturation which its density is compatible with the
condensate density.
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Figure 1 - Comparison LDT/ NPHI log porosity for gas and oil and
brine saturation [KH#35].
Back-Propagation Neural Networks
The back–propagation artificial neural network (BP-ANN) is a
relatively new tool in petroleum geoscience, which is gradually being
introduced into several practical applications including seismic analysis
(Poulton, 2001). It simulates the cognitive process of the human brain
and is well suited for solving difficult problems, such as character
recognition, which are not amenable to conventional numerical
methods (Helle et al., 2001). The ANN functions as a non-linear
dynamic system that learns to recognize patterns through training. The
network has two major components (Callan, 1999): nodes or neurons
and connections, which are, weighted links between the neurons (figure
2).

Upon exposure to training examples (patterns), the neurons in an
ANN compute the activation values and transmit these values to each
other in a manner that depends on the learning algorithm being used.
The learning process of the BP-ANN involves sending the input values
forward through the network, and then computing the difference
between the calculated output and the corresponding desired output
from the training data set. This error information is propagated
backwards through the ANN and the weights are adjusted. After a
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number of iterations the training stops when the calculated output
values best approximate the desired values (Callan, 1999). The
similarities between BP-ANN and the common geophysical inversion
techniques are obvious. The ANN approach has several advantages
over conventional statistical and deterministic approaches. The most
important one is that it is free from the constraints of a certain function
form (Helle et al., 2001). There are two questions in neural network
design that have no precise answer because they are application-
dependent:
1 How much data do we need to train the network?
2 What is the best number of hidden neurons to use?
In general, the more facts and the fewer hidden neurons there are, the

better (Callan, 1999). There is, however, a subtle relationship between
the number of the facts and the number of hidden neurons. Too few
facts or too many hidden neurons can cause the network to memorize,
implying that it performs well during training, but tests poorly and fails
to generalize. There are no rigorous rules to guide the choice of the
number of hidden layers and the number of neurons in the hidden
layers. However, more layers are not better than few, and it is generally
known that a network containing few hidden neurons generalizes better
than one with many neurons (Helle et al., 2001). In this case study, at
first we chose twelve neurons for hidden layer of porosity network and
then decreased the number of neurons one by one to seven and we
found that ten neurons gives the best condition. The standard back-
propagation algorithm has been given in different handbooks about
neural (Callan, 1999).

The Porosity Network
For the porosity network we used the architecture shown in figure (2)
with three neurons in the input layer, i.e. density (Litho Density Tool:
LDT), sonic (Bore Hole Compensate: BHC) and resistivity (Latero
Log Deep: LLD). A single hidden layer has ten neurons and the output
layer has only one neuron (porosity). The mian advantage of using
porosity derived from the density measurements is the fact that these
are the best possible estimates of in situ porosity values since the
compressibility of the pure grain material is likely to be small compared
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with that of the matrix (Lucas, 1998). The grain density in the
laboratory is thus not very different from in situ values, and hence the
porosity estimates are less prone to pressure corrections than those
based on core plug.

Figure 2- Architecture of a BP-ANN with three nodes in input layer, ten
nodes in hidden layer and only one node in output layer.
Initially, for the porosity network, we selected and sorted data from
three wells in Khangiran Gas Field in northeast of Iran only for pay
zone (Mozduran formation) for training, testing and validation of
network separately and then we generalized this network for every well
and adjusted the parameters of this network with trial and error. Also,
we composed the log data of three wells together and did the above
steps for this synthetic well. For the verification of the network, two
sets of data are used during training, which are completely separate: a
set of training patterns and a set of training-testing patterns. Weight
adjustments are based on the training patterns, however, at intervals
during training, the error is computed and the net is saved on the best
performance on the test set. When the error begins to increase, the net
starts to memorize the training patterns too specifically and starts to
lose its ability to generalize as well. At this point, the training should be
concluded (Callan, 1999). Calibration is another useful parameter when
training a net; since it defines how often the test set is evaluated, thus
optimizing the network’s generalization (Al-Qahtani, 2000). Other way
to verify the network’s predictions is by using a third data set called the
production set, which is not used in the training process of the net. In
this study, verification was performed by use of training set, testing set



Nabi-Bidhendi, M., and Seddigh Arabani, M., IIJS, 3 (Geol.),
2002
___________________________________________________________________

ÏÏÕ

(training-testing set) and validation set (production set). The
production set contains similar data to that of the training and test
patterns, that is, a set of inputs describing features as well as its
correspondent target outputs. This data set is rather utilized to
compare the predictions of the network with the actual target values by
exposing the developed to that set (Callan, 1999).

Figure 3 shows the trend of training of the porosity network. With
the learning rate of 0.7 the initial network converges to sum square
error (SSE) of 0.001. Therefore, at this stage more attempts should be
done to generalize the network. We compared the porosity predicted
by ANN with those predicted by the density-neutron porosity
transform (equation 3). Figure (4), shows the best linear fit and
regression between ANN porosity and log porosity and figure (5)
shows the comparison between the two values for well No. 35. Also,
figures (6) and (7) and figures (8) and (9) show the similar cases for
wells Nos. 36 and 46, respectively. For composition of these three
wells, figures (10) and (11) show the regression and comparison
between ANN porosity and log porosity. As can be observed from
figures (4) to (11), the ANN method is a reliable tool for estimating
porosity from well log data.
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Figure 3 - Squared error versus epoch for training and testing and
validation with learning rate of 0.7 for initial network [KH#35].

Figure 4 - Correlation between ANN porosity versus log porosity for
well KH#35.

KH#35

0

0.05

0.1

0.15

0.2

0.25

0.3

33
01

33
08

33
16

33
23

33
31

33
38

33
46

33
53

33
61

33
68

33
76

33
83

33
91

33
98

DEPTH (m)

PO
R
O
SI
TY
(fr
ac
)

ANN POROSITY LOG POROSITY

CORRELATION BETWEEN ANN POROSITY VERSUS
LOG POROSITY(KH#35)

y = 0.9316x + 0.0042
R2 = 0.9338

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

LOG POROSITY (frac)

A
N
N
PO
R
O
SI
TY
(f
ra
c)

POROSITY Linear (POROSITY)



Nabi-Bidhendi, M., and Seddigh Arabani, M., IIJS, 3 (Geol.),
2002
___________________________________________________________________

ÏÐÍ

Figure 5 - Comparison ANN porosity with log porosity for well KH#35.
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Figure 6 - Correlation between ANN porosity versus log porosity for
well KH#36.
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Figure 7 - Comparison ANN porosity with log porosity for well KH#36.

Figure 8 - Correlation between ANN porosity versus log porosity for
well KH#46.
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Figure 9 - Comparison ANN porosity with log porosity for well KH#46.
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Figure 10 - Correlation between ANN porosity versus log porosity for
combined data of three wells.
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Figure 11 - Comparison ANN porosity with log porosity for combined
data of three wells.

Conclusions
The neural net approach requires no underlying mathematical model
and no assumption of linearity among the variables. The main
drawback of the method is the amount of effort required to select a
representative collection of training facts, which is common for all
models relying on real data, and the time to train and test the network.
On the other hand, once established the application of the network
requires a minimum of computing time. The network approach, also,
requires no a priori knowledge of the matrix material and pore fluid,
and can thus equally well be applied while drilling without prior
petrophysical evaluation. Our porosity predictions obtained from ANN
method are sufficiently accurate in comparison to that obtained from
the density log data.
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