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Abstract 
Solitary waves are coincided with separatrices, which surround an 
equilibrium point with characteristics like a center, a sink, or a source. The 
existence of closed orbits in phase plane predicts the existence of such an 
equilibrium point. If there exists another saddle point near that equilibrium 
point, separatrix orbit appears. In order to prove the existence of solution for 
any kind of boundary value problem, we need to apply the fixed-point 
theorems. The Schauder’s fixed-point theorem was used to show that there 
exists at least one nontrivial solution for equation of wave motion in arteries. 

The equation of wave motion in arteries has a nonlinear character, and the 
amplitude of the wave depends on the wave velocity. There is no general 
analytical or straightforward method for prediction of the amplitude of 
solitary waves. Therefore, the solution must be found by numerical or non-
straightforward methods. The methods of saddle point trajectory, escape-
time, and escape-energy are introduced and shown that they are applicable 
methods with enough accuracy. Application of any of these approximate 
methods depends on the equation of motion, and the user preference.  

Applying a phase plane analysis, it was shown that the domain of periodic 
solution is surrounded by a separatrix. The separatrix is coincident with the 
desired solitary wave. The amplitude of the solitary wave is the most 
important characteristic of the wave, and will be predicted with each of the 
above methods. 
 
Keywords: Solitary waves, Qualitative analysis, Fixed Point 
                    Theorems, Waves in arteries. 
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1 Introduction 
1.1 Solitary Wave 
Solitary waves exhibit a particle-like behavior and decay to zero at 
infinity. They are solutions of nonlinear wave equations, however not 
all nonlinear wave equations have solitary wave solutions. Solitary 
waves are a class of nonlinear waves that have very interesting 
properties. They propagate without change of shape, and two solitons 
can cross without interaction. The properties of a solitary wave result 
from an exact balance between dispersion, which tends to spread the 
solitary wave into a train of waves, and nonlinear effects, which tend 
to shorten and steepen the wave. 

For the Korteweg-deVries (KdV) equation ( t x xxxu uu u 0+ + = ), 
which is the first soliton to be noted in nature, the propagation speed 
of a solitary wave increases and the wave width decreases as the wave 
amplitude increases. Because large waves propagate faster than 
smaller waves, a large wave trailing a smaller wave will eventually 
catch up to the smaller wave. A complicated nonlinear interaction 
between the two waves results in a transfer of energy, mass and 
momentum from the larger wave to the smaller. Consequently, the 
rear wave shrinks in amplitude and slows down while the small one 
grows in amplitude and speeds up, propagating ahead of the trailing 
wave. The final large and small waves have exactly the same 
amplitudes as the initial large and small waves. The preservation of 
wave identities after a nonlinear interaction between two waves is a 
special property of the nonlinear wave equations. 

The elevation u of a shallow solitary water wave traveling in the x 
direction, after ignoring Coriolis force and viscosity is given by, 

( )2
0u( x ,t ) H Sech n x t x = ⋅ − ν −  , where H is the maximum wave 

height, x0 is the initial location of the solitary wave crest, and ν is the 
wave speed. Using η for the depth of water, the wave number n is 
defined by 2 3n 3 H / 4= η . While the length of a solitary wave is 
theoretically infinite, for practical purposes, the water surface 
elevation decays to zero fast with x and we can usually define a 
wavelength, L, as L 2 / n= π . At a distance of x = L/2 away from the 
peak, the water surface displacement is reduced to 0.74% of its 
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maximum value. Using the speed of a solitary wave, 
g( H ) 2 fν = η + = π , the wave period can be defined as T=L/C. 

Wave frequency ω is related to wave number n by the dispersion 
relation, ( )2 2gn tanh n gnω = η ≈ η , where g is the acceleration of 
gravity. Solitary waves are nonlinear because the amplitude of a given 
wave H is related to the wave speed ν and to the wave number n. 
Figure 1 depicts a solitary wave moving to the right. 
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Figure 1- Schematic illustration of a solitary wave. 
 
1.2 History 
Solitons and scientific importance of solitary waves were discovered 
by Russell over one hundred and fifty years ago, when Russell, a 
young Scottish engineer, reported his scientific discovery to the 
British Association for the Advancement of Science that: “I was 
observing the motion of a boat which was rapidly drawn along a 
narrow channel by a pair of horses on the Union Canal at Hermiston, 
when the boat suddenly stopped, the mass of water in the channel 
which it had put in motion accumulated round the prow of the vessel 
in a state of violent agitation, then suddenly leaving it behind, rolled 
forward with great velocity, assuming the form of a large solitary 
elevation, a rounded, smooth and well-defined heap of water, which 
continued its course along the channel apparently without change of 
form or diminution of speed.” By experiments, Russel discovered that 
the velocity ν of the wave depends on the maximum elevation H of the 
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wave and on the depth η of the undisturbed water in the channel, 
(Russell 1844, Russell 1865). Independently, Boussinesq found the 
hyperbolic secant-squared solution (solitons) for the free surface 
waves, (Boussinesq). Later in 1895, Korteweg and deVries found the 
unidirectional equation of solitaries, which is now named after them, 
(Korteweg, and de Vries 1895). In less than 5 decades (1890-1940), 
soliton had been found in many other branches of science, (Newell 
1983). Zabusky and Kruskal in 1965 demonstrated that solitary waves 
as solutions of the KdV equation can interact and carry on thereafter 
as if they never had interacted. Therefore, the word soliton was 
created to emphasize that it is a localized entity that may keep its 
identity after interaction, (Drazin 1983).  
1.3 Application 
Solitons are waves that move like particles along a conductor. An 
example is the ocean wave, which moves through the water-air 
interface without dissipating much of its energy and reverberates 
around the globe for an extended time without loosing its shape. This 
is in part due to the physical arrangement of the water molecules at the 
interface.  

Communications engineers want light signals to travel through long 
fiber optic cables without changing shape, so they have been 
developing optical solitary waves that travel long distances without 
distortion. Solitary sound waves are thought to be very difficult to 
produce because the properties of air do not seem to permit them. Any 
large disturbance in air generates a traveling sound wave that changes 
shape as it propagates. Solitary waves in optical fibers maintain their 
shape because the material exhibits "dispersion," a speed of light that 
depends on frequency in just the right way but the speed of sound in 
air is relatively independent of frequency; so solitary sound waves 
have been a great challenge. 

Over the last several years solitary waves generating in train tunnels 
created severe waveforms and problems for civil and traffic engineers. 
Several types of heavy machinery, such as compressors, generate 
acoustic shocks, which engineers consider a nuisance, and suppression 
of them is difficult.  

The wide application of methods developed in the theory of 
oscillations and the wave theory were due to the progress in radio 
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physics, plasma physics, and laser optics. In these applications, the 
most important problems were related to nonlinear waves in 
depressive media. Therefore, almost all the basic oscillation concepts, 
such as phase plane, self excitation, limit cycle, bifurcation, 
resonance, etc., have been widely used in the theory of waves. This 
was naturally accompanied by an intense development of approximate 
methods. 
1.4 The Problem 
The solution of the wave equation of the type u(x, t)=u(z) where 
z=x nt± , indicates stationary traveling waves. Applying this 
substitution, the partial differential wave equations will transform into 
ordinary differential equations. The amplitude of linear waves as 
solutions of the linear PDE can be chosen arbitrary. On the contrary, 
the amplitudes of the nonlinear waves are determined by their 
nonlinear PDE. Consequently, period and wavelengths of periodic 
nonlinear waves depend on their amplitude. Typical forms of 
nonlinear waves are the solitary waves where the deterioration of the 
wave by dispersion is compensated by nonlinearity. Not every 
nonlinear PDE has solitary wave solution, and even if an equation 
does have one, it may not be possible to find the exact analytic form 
of the solitary wave nor its amplitude. Therefore, amplitude is the key 
factor in the analysis of solitary waves, and predication or evaluation 
of the amplitude of the solitary wave still is a challenge, (Kneubuhl 
1997). 

Solitary waves u(x, t) can be characterized by the following 
conditions 

u( x ,t ) u( x t ) u( z )= ± ν =          (1) 

1 2z z
lim u( z ) c cnst , lim u( z ) c cnst
→−∞ →+∞

= = = =     (2) 
2 2 2

3u ( x ,t ) u ( z ) c= ≤ < ∞           (3) 
where typical relations between c1 and c2 are 1 2c c 0= =  as well as 

1 2c c 2− = ± π .  
If the final equations are autonomous, one can use the method of 

phase trajectories, but the phase space of these equations are 
degenerated due to the wave velocity, ν. Therefore, all singularities, 
trajectories, separatrices, and limit cycles form a continuum. The 
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separatrix are those trajectories which are going out of a saddle and 
returning to it (homoclinic) or entering another saddle (hetroclinic), 
(Lonngren, and Scott 1978). Solitary waves involve single-wave 
pulses with a bell-shaped profile propagating with constant speed. In 
general, determination of the properties of stationary solutions, 
including solitons, is a complicated problem. Predication of the wave 
height is an essential measure of the model accuracy, but waveform 
and phase are equally important, especially for wave interactions in 2-
D problems. In a resent paper, Epstein and Johnston, presented a 
numerical scheme for predicting the amplitude of solitary waves in an 
elastic artery with any given speed of wave. They showed the 
importance and difficulties of finding the amplitude of a solitary wave 
in an elastic tube, (Epstein, and Johnston 1999).  

The method of phase plane was introduced to the wave theory in the 
early sixties, and very soon was widely used for analyzing the 
behavior of shock waves, envelope waves and other types of 
solutions. Separatrices deserve special attention among phase 
trajectories on the wave phase plane. They illustrate the distinction in 
the roles of analogous types of solutions for the cases of oscillations 
and waves. A separatrix is a normalizable solution between the 
regions of phase space with topologically different types of 
trajectories, (Ostrovsky 1989). 
 
2.  Existence Theorem 
Closed-form solution for most of the differential equations is limited. 
Because of that, in twentieth century, the approach of analysis of 
differential equations shifted to development of conditions that 
guarantee the existence of nontrivial solutions. In dynamics and 
vibration, periodic solutions are usually the most important solutions 
sought for a dynamic system. The significance of periodic solutions 
lies on the fact that all aperiodic responses, if convergent, would 
approach the periodic solutions at the steady state condition. 
Therefore, the periodic solutions would represent the steady-state 
response of the system.  
Solitary waves are special periodic solution and the condition of their 
existence must be determined. In order to prove the existence of 
periodic solution in this study, an operator on a Banach space is 
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defined to show that there exists a fixed point in the space under a 
defined operator. The defined operator would be based on the 
boundary value integral form of the problem. 

Although the differential equation of the dynamic system to be 
considered is of the form u f ( u )′′ = , we present and prove a stronger 
existence theorem and show that the required condition for a periodic 
solution exists. Consider the following general second order ordinary 
differential equation, 

)'u,u(f"u =            
where f is a C1 continuous real-valued function with domain R2. It is 
smooth enough to ensure existence and uniqueness of the solution 
with any set of initial conditions. We establish the following Second 
Order Autonomous Existence theorem. 
 
Second Order Autonomous Existence Theorem:  
If there exist constants a and b, ba ≥ , k>0, q and N, q N≥ , such that, 

)0,b(f0)0,a(f ≤≤           (4) 
k ( q N ) M

3
−

>            (5) 

where  
{ } |b| , |a| maxN =           (6) 

{ } Z)'u,u(:)'u,u(fku maxM ∈+=      (7) 

{ } kq|'u| ,q|uu| :R)'u,u( maxZ i 222 ≤≤−∈=    (8) 
0=)'u,u(f ii , aub i ≤≤          (9) 

then there exists at least one 0τ ≠ such that equation  
)'u,u(f"u =           (10) 

has a nontrivial solution satisfying the following boundary condition, 
u( 0 ) u( )= τ           (11) 

 
The equilibrium point u=ui can be a center, sink, or source. If in 
addition, f(0, 0)=0, and the point u=0 is a saddle point, then the 
system can have a separatrix, which originates at u=0, surrounds u=ui 
and terminates at u=0. 
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3 Solitary Wave in Artries 
It was shown by Demiray (1996), that the equation of motion for wave 
propagation through a fluid-filled elastic tubes is,  

02
z

sm 1u" f ( u ,u') ( p p )( 1 u )
s mv 1 u 2

θ = = − + + − + 
    (12) 

where, 









+

−
ν

= 4

2

)u1(
11

2
p    ,   

0u0 s2p
=θ=       (13) 

Equation (12) is an approximation in the sense that the amplitude and 
slope is assumed to be small everywhere, so u<<1, and terms 
proportional to 2)z/u( ∂∂  could be neglected, (Epstein, and Johnston 
1999). The explicit form of the functions sθ, and sz depend on the 
particular constitutive equation for the tube material. These are given 
by Demiray (1996), as: 

)3(
222

22 1

)1(
1)1( −









+

−+= I

z

e
u

us α

θ
θθ λλ

λ       (14) 

)3(
222

2 1

)1(
1 −









+

−= I

z
zz e

u
s α

θ λλ
λ        (15) 

where 

22
z

2
2
z

22
1 )u1(

1)u1(I
+λλ

+λ++λ=
θ

θ .      (16) 

 
The equation of motion (12) is in the form of the general equation (10)
. As an example, we analyze the system for a typical human artery to 
show the application of the theorem. The following numerical values 
are provided in the order of magnitude of actual biological 
measurements of human arteries, (Yomoza 1987). 
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Figure 2- Plot of the right hand side of equation (12) indicating that the 
condition (4) is fulfilled 
 

85.12.14.0m948.1 z =ν=λ=λ==α θ    (17) 
Figure 2 depicts the right hand side of Equation (12). It indicates that 
the condition (4) is fulfilled, and illustrate the domain of a and b. 
Choosing k=1, determines that, 

{ } mu a |b|  , |a| maxN <==         (18) 
where 063869.0um ≈  is the amplitude of the solitary wave. The graph 
of u+f  is shown in Figure 3 and is used to find M as:  

{ } 070268.0 Z)u'(u,  :  |)'u,u(fu| maxM ≈∈+= .     (19) 
Thus, if q is any number satisfying the following inequality 

aM3q +>            
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then, there exists at least one initial condition in the following 
rectangle in state space, which satisfies the condition (11) and 
generates a periodic orbit. 

q|'u|,q|uu| i 22 ≤≤−          
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Figure 3- Illustration of u+f 
 
4. Approximation of Amplitude 
4.1 Phase Plane Method 
The method of phase plane was introduced to the wave theory in the 
early sixties, and very soon was widely used for analyzing the 
behavior of shock waves solitons, envelope waves and other types of 
solutions. Separatrices deserve special attention among phase 
trajectories on the phase plane of the wave. They illustrate the 
destination in the role of analogous types of solutions for the cases of 
oscillations and waves. A separatrix is a normalizable solution 
between the regions of phase space with topologically different types 
of trajectories, (Novikov, Novikov, and Manakov 1984). In this 
section, we analyze the system in phase plane and look for some 
numerical method to evaluate the amplitude um of the solitary wave in 
arteries. 

The phase portrait and tangent field of equation (12) is shown in 
Figure 4. The two orbits that are plotted in solid line, pass through 
points (0.091,0) and (0.095,0). Their time histories are also illustrated 
in Figure 5. 
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Figure 4- Phase portrait and tangent field of equation (16) 
 
It is seen from Figure 4 that the origin is a saddle point and point (ui, 
0) is a center. The characteristic of equilibrium points would also be 
predictable by considering Figure 2. The saddle point trajectory 
separates two different motions, and indicates the solitary wave. Here 
the saddle point orbit is a homoclinic one since it leaves the 
equilibrium and returns asymptotically to it as time increases. 
We would like to find the amplitude, um, of the solitary wave, which is 
the point of intersection of the saddle point orbit with u-axis. 
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Fig. 5- Time history of the orbits shown in Fig. 3 
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It is known that if the equation of motion is in the form of u”=f(u), 
then the integral of f(u) between 0 and um must vanish, (Epstein, and 
Johnston 1999). Thus um, which is shown in Figure 2, could be found 
by satisfying the following equation: 

0
0

=∫
mu

du)u(f            (20) 
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Figure 6- solitary wave for equation (16) 
The solitary wave must sit between orbits of Figure 4 and/or graphs of 
Figure 5. The time history of the solitary wave is illustrated in Figure 
6.  
In order to find the amplitude of the solitary wave, um, the saddle point 
trajectory is searched for. To do this, the linearized state equations 
around the saddle point, (0, 0) are analyzed. 

uy
y
fu

u
fy

yu

68147.0
)0,0()0,0(

=
∂
∂

+
∂
∂

=

=

       (21) 

Hence, the eigenvalues and eigenvectors of the system are 









±
6483575866.06366179135.0

6.785400456-7711793774.0
8255121.0     (22) 

Due to physical appearance of the waves in arteries, we are only 
concerned with the positive half space u>0,. One of the eigenvectors 
shows the direction of departure from saddle point, and the other one 
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shows the direction of arrival to the saddle point. We call the first one, 
positive eigenvector and the latter, negative eigenvector. 
If we disturb the states of the system from unstable saddle point 
equilibrium on the positive eigenvector direction and set the system to 
be released from the following initial conditions, 

6366179135.000001.0)0(
7711793774.000001.0)0(

×=
×=

y
u

       (23) 

then, the states of the system will change due to the nonlinear equation 
of motion, and will trace the saddle point trajectory. The intersection 
of the trajectory with u axes will determine the amplitude of the 
solitary wave um. Figure 7 shows the saddle point orbit, and its time 
history is illustrated in Figure 8. The amplitude of the wave is 
approximately equal to um=0.063869. 
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Fig. 7- phase plane illustration of saddle point orbit 
 
Disturbance of a system from a saddle point equilibrium in direction 
of positive eigenvector which is used to find the approximate 
amplitude of the solitary wave, is not only applicable to equation (12), 
but also to any equation of the form )'u,u(f"u = . 
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Figure 8- Time history of the response of the system, disturbed from 
saddle point equilibrium 

 
4.2 Escape Energy Method 
An alternative method to evaluate um, is called Escape-Energy 
method. If we write the equation of motion (12) in the following form: 

)u(fuu"u +=+          (24) 
then, it can be seen that  

( ) 'u)]u(fu[u'u
dz
d'E +=+= 22

2
1

2
1        (25) 

therefore, 

dz'u)]u(fu[E ∫ += 2         (26) 

where E is called the moving energy. A disturbed system on a positive 
eigenvector ripples from the saddle point easier than closed by 
disturbed points. Therefore, the value of moving energy is minimum 
for a saddle point orbit. Figure 9 illustrates the required energy for the 
system that starts from ( 0 iu( 0 ) u u= > , u'( 0 ) 0= ) and escapes from 
second quarter of phase space, (u>0, u’<0). Figure 9 indicates that the 
escape energy is minimum for the saddle point trajectory. Hence, upon 
determining the position of saddle equilibrium, the value of moving 
energy can be determined for disturbed system. The minimum of the 
moving energy corresponds with the solitary wave. 
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Figure 9- Escape-energy E versus u0 

 
4.3 Escape Time Method 
Due to the dynamic behavior of saddle point trajectory, the required 
time to close the solitary orbit is infinity theoretically. The third 
approximate method, which is presented here, is called the Escape 
Time method. Based on Equation (12), the time of motion from the 
following initial conditions 

0)0('u,uu)0(u i0 =>=        (27) 
where ui is the position of the center equilibrium point, is  

duT
2 f ( u )du

= ∫
∫

.         (28) 

The time required to escape from second quarter of phase space, (u>0, 
u’<0), will be maximum for the saddle point trajectory, since the 
saddle point trajectory approaches the equilibrium point 
asymptotically. It is shown in Figure 10, that the escape time T, 

m

u 0
u' 0

u u
u' 0

duT
2 f ( u )du

=
=

=
=

= ∫
∫

        (29) 

is maximum for ui . 
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Figure 10- Escape-time T versus u0 
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Figure 11- Position of the inflection point ui 
 
4.4 Effect of Wave Speed 
The approximate methods presented in previous sections are 
applicable to any system for which the origin is a saddle point 
equilibrium. Hence, upon determining the position of saddle point, it 
must be transformed on the origin. The behavior of the equation of 
motion (12) depends on the wave speed v. In order to analyze the 
effect of the wave speed, the position of the equilibrium point ui, and 
the amplitude of solitary waves um, are determined for different wave 
speed and are illustrated in Figure 11 and 12. A critical wave speed is 
the minimum required wave speed to have a solitary wave.  
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Employing Equations (12) to (16) along with condition (20) provides 
and equation for the critical velocity to have a solitary wave. 

( ) ( )4 2 2 4 2 2
z z z

2 2
z

3 1
8 4 4 2 2 2

2z z z
c 2 2

z

2 2 2
v e

θ θ θ

θ

 α λ λ +λ λ − λ λ +
 
 λ λθ θ θ  

θ

αλ λ + αλ λ + λ λ + α
=

λ λ
   (30) 

Dependency of the amplitude of solitary wave to the wave speed, and 
the critical wave speed, vc=6.6, are shown in Figure 12. 
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Fig. 12- dependence of the amplitude um to v 
 
5. Model Analysis 
The equation of motion (12) is completely defined whenever the 
explicit form of the stress components sz and sθ are derived. For a 
symmetrically deformed membrane, the components of the principal 
stresses may be given as: 

z
zz Λ∂

Σ∂
Λ=σ     ,      

θ
θθσ

Λ∂
Σ∂

Λ=           (31) 

where 
zz s µσ =       ,      θθ µσ s =         (32) 

and  
),(),( uzz λθ Σ=ΛΛΣ=Σ         (33) 

Σ is the strain energy density function of the tube material. It is seen 
that sz and sθ are functions of u(z, t), but the form of their functions 
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depend on the mathematical model of strain energy density function, 
Σ. Equations (31) and (32) are derived from Demiray’s model D1, 

( )1
2

)3(
1

1 −=Σ −I
D eα

α
µ          (34) 

Solitary wave has one bump and then exponentially tends to zero. 
Therefore, outside a small interval where the pulse exists, the function 
goes to zero. The phase plane analysis showed that the function f(u) 
must have a double zero at u=0 and another at u=ui>0, and must be 
C1 in this interval. It must be positive in the interval ( )iu 0 ,u∈  and 
negative in the interval ( )i mu u ,u∈ . The separatrix orbit, which 
originates at u=0, surrounds the other equilibrium point ui, and 
separates the domain of closed orbits around ui and open orbits. In 
addition, the integral of f(u) between u=0 and u=um must vanish. 
If we rewrite the equation of motion (12), in the following form 
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and enforce the conditions f(0)=0 and f(ui)=0, the following 
conditions on the function � are achieved: 
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where 
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The continuity condition shows that 
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and in addition, 
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and the integral condition leads to the following equation: 
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Now we examine the following three energy functions, presented by 
Demiray (1972), 
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Ishiara (1951), 
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and Demiray (1976), 
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The functions ΣD1, ΣD2, satisfy all the required conditions, and ΣI 
could only be a satisfactory energy function for some β and  δ. 
Now, suppose that the function f(u) be a given function, say 

uvBuvAufu )()()(" 2 +−==         (45) 
 0)(  ,0)(  : >>∀ vBvAv           (46) 

This function satisfies the conditions (40) and (41), provided that 

)(
)(3
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Substitution of (45) into (35), reduces Equation (35) to the following 
parametric partial differential equation which can be used to 
determine the energy function Σ. 
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There exists no general method for solving this differential equation. 
Thus to find a satisfactory energy function one must consider physical 
features in addition to the mathematical considerations. 
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Conclusion 
The type of solitary waves in arteries and tubes depend on the given 
model for strain energy density function of the tube material. There 
are some necessary physical conditions, which must be satisfied by 
the strain energy function. Once a strain energy function is defined, 
the wave equation of motion will be set up. The principal 
characteristic of solitary waves is their amplitude. Although there is 
no general analytical method, the amplitude can be found by some 
numerical and non-straightforward methods. Three approximation 
methods are explained and examined in this paper to evaluate the 
amplitude of solitary waves. 
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Nomenclature 
a, b, c constant parameters 
C wave velocity 
C1 class of continues first derivative function 
E escape moving energy 
f wave function, frequency [Hz] 
h tube wall thickness 
g acceleration of gravity 
H maximum wave height 
I1, I2  basic invariant of the Green deformation tensor 
k restoring coefficient constant 
L wavelength 
n wave number 
p total inner pressure 
R initial radius of tube, set of real numbers 
s dummy variable 
sz, sθ stress components 
S, B Banach spaces 
t Time 
T wave period 
u radial displacement 
ui Inflection point 
U operator 
v wave velocity 
z axial coordinate 
α, m material constants 
Γ escape moving time 
λz axial stretch ratio 
λθ circumferential stretch ratio 
Λz stretch in axial direction 
Λθ stretch in circumferential direction 
ρ mass density of tube material 
ω wave frequency [rad/s] 
τ period 
ρf mass density of fluid 
σz, σθ total Cauchy stresses 
µ shear modulus of tube material 
η depth of the water 
Σ strain energy 
subscripts  
m maximum 
z axial 
θ circumferential 
1, 2 invariant indication 

 
 


