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Abstract
In many real systems, it happens that the existing flow network become
inconsistent with the new applications or inputs. This means that some
of the applicable structural characteristics have been changed so that
the flow network has become infeasible or, in other words, obsolete.
Therefore, it has to be adjusted to new applications. It is well known
how to use a maximum flow algorithm to determine when a flow
network is infeasible, but less known is how to adjust the structural
data such that the network becomes feasible while the incurred
adjustment cost is minimal. This paper considers an infeasible flow
network G= (V, A) in which supplies/demands, arc capacities and flow
lower bounds are liable to relax. A minimum cost relaxation model for
canceling most positive cuts is constructed. Analyzing the model shows
that, in order to make the network feasible, it is sufficient to adjust only
one component of the structural data. According to this result, a
polynomial time algorithm is developed to cancel all positive cuts and
convert the infeasible flow network to a feasible one.
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1. Introduction
Consider a flow network G= (V, A) with supplies/ demand b, arcs
capacity u and flow lower bounds l. The supplies / demands are such
that =∑

∈vi
ib 0. A flow x = ( ijx ) is called feasible if it satisfies

∑
j

ijx - ∑
k

kix = ib , for all Vi ∈ (1.a)

ijl ≤ ijx ≤ iju , for all ( ji, ) ∈ A (1.b)
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The constraints (1.a) and (1.b) are called conservative (or mass
balance) and bound conditions respectively. If a flow networks admits
a feasible flow then it is called a feasible flow Network (FFN),
otherwise it is an Infeasible flow Network (IFN). Feasibility of a given
flow network can be checked by solving a maximum flow problem
defined on the related extended network as follows:

Add two artificial nodes s and t as source and sink, respectively, to
V; for each supply node i ( >ib 0) add arcs ( is, ) with sil = 0 and

siu = ib . Similarly for each demand node i ( <ib 0) add arcs ( ti, ) with
=itl 0 and iit bu −= . Now if the solution of the maximum flow problem

on this extended network saturates the arcs leaving s or entering t then
the original flow network is feasible, since if we omit the components
of this solution corresponding to the added artificial arcs a feasible flow
for the original network is obtained. Therefore, if the maximum flow
does not saturate the mentioned arcs we conclude that the flow
network is infeasible and its structural data have to be modified. We
are going to find a method that converts an IFN to a FFN with the least
modifying cost.

2. Positive cut canceling method
Network flow infeasibility can also be diagnosed by means of cut
values. If S is a non- trivial subset of V ( ..ei ≠S ?‡, VS ≠ ) a cut
( SS , ) is defined as

( SS , ) = { ( ji, ) ∈ A ∈i ,S Sj ∉ }.

The cut’s capacity and value are defined as

u ( SS , ) = ∑
∈ ),(),( ssji

iju - ∑
∈ ),(),( ssji

ijl

and
V ( SS , ) = b ( S ) – u ( SS , ),

respectively, where b(S) = ∑
∈Si

ib , [See (Ahuja et al., 1993)].
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It has been proved (Ahuja et al., 1993 and Hoffman, 1960) that a flow
network is infeasible if and only if there exists a cut ( SS , ) such that

V ( SS , ) > 0 (2)

such a subset is called a witness of infeasibility (Aggarwal et al., 1998).
The superiority of this method, regarding the maximum flow method,
is that it establishes a practical way to convert an IFN to FFN.

In an IFN, depending on its structure, it may be possible to adjust or
modify all of the structural data. That is the supplies / demands,
capacities and flow lower bounds can (or have to) be modified. In
other cases modifying only some of the structural data, i.e. only flow
bounds, may be an obligation. In this paper, we consider both of these
cases.

In an IFN, in order to achieve feasibility, the constraint (2) has to be
canceled for all positive cuts. This can be done only by adjusting the
structural data. Denote the cost of one unit change in supply or
demand of node i by iC for all Vi ∈ , and cost of changing one unit in
flow bounds (capacity or lower bound) of arc ( ji. ) by ijC for all ( ji, )

A∈ .
Now suppose ( SS , ) is a positive cut in the flow network. If the

amounts of change in ib s, , ijl s, and iju s, are denoted by id , ijp and

ijq respectively, then the Minimum cost Relaxation Problem (MCRP)

for canceling the cut ( SS , ) is

Min i
si

idc∑
∈

+ ∑
∈ ),(),( ssji

ijc ijp + ∑
∈ ).(),( ssji

ijijqc (3.a)

s.t.
)( i

si
i db −∑

∈

+ )(
),(),(

ij
ssji

ij pl −∑
∈

- ∑
∈

≤+
),(),(

)(
ssji

ijij qu (3.b)

0≥id , Si ∈ (3.c)
0≥ijp , ),( ji ∈ ( SS , ) (3.d)

0≥ijq , ( ji. ) ∈ ( SS , ) (3.e)
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in the above problem, we have assumed that the costs of modifying the
flow lower and upper bounds for each arc are equal. As it is seen, the
minimization model has been constructed based on all data
modification. If only the flow bounds are permitted to change, the
problem will be modeled as

Min ij
ssji
ij pc∑

∈ )/(),(
+ ij

ssji
ijqc∑

∈ ),(),(

(4)
s.t

∑
∈si

ib + )(
)/(),(

ij
ssji
ij pl −∑

∈

- 0)
)/(),(

( ≤+∑
∈ ij

q
ssji

iju

opij ≥ , ( ),(), SSji ∈

oqij ≥ , ( ),(), SSji ∈

now define C′= min. { SiCi ∈/ }, C′′= min { /ijC ( SSji ∈), } and

C = min. { CC ′′′, }, where SS = ( SS , ) ∪ ( SS , ).

Theorem 1. The optimal solution of MCRP consists of V( SS , ) for
the variable corresponding to C and zero for all other variables.

Proof. Since (3.b) can be rewritten as

∑ ∑
∈ ∈∈

≥+ +∑
Si SSji

ij

SSji

iji qpd
),(),(),(),(

V ( SS , ),

the dual of problem (3) is

Maximize V ( SS , ) w
s.t.

w SiCi ∈≤ ,
w ≤ SSjiCij ∈),(,
w 0≥

the optimal solution of this problem is w*= C .
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According to the definition of C , either kCC = for some SK ∈ , or

klCC = for some ( lk , ) SS∈ . We call kd or klp or klq , accordingly, the
variable corresponding to C . Now set the value of this variable equal
to V ( SS , ) and the values of all other variables equal to zero. The
objective function then equals to C V ( SS , ) and the constraint (3.b)
becomes binding. Therefore we get two primal and dual feasible
solutions for which the value of both objective function is equal to
C V( SS , ). According to the weak duality theorem, both solutions are
optimal.

This Theorem may be proved by a simpler argument. Note that all
the variables and parameters in the problem are nonnegative. So setting
all variables equal to zero, but the one with the smallest coefficient,
which is set equal to V( SS , ), will give a feasible solution with the
minimum objective value. �

Corollary1. If C = min { /ijC SSji ∈),( }, then the optimal solution

of (4) consists of V ( SS , ) for the variable corresponding to C and
zero for other variables. �

2.1 Minimum cost algorithm.
The above Theorem and corollary provide a very simple and efficient
method for canceling a positive cut. It is sufficient to modify only one
component of the structural data of the flow network by v( ), SS . In
Fig.1, we present a high-level descriptive algorithm that can be used
for both problems (3) and (4).

In the algorithm the procedure mostpositive-cut finds a most positive
cut ( SS , ) and returns its value if there exists such a cut; otherwise, it
returns a negative value. A straightforward way to compute the most
positive cut is to apply a minimum flow algorithm to the network.
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Minimum changing cost algorithm

begin
while CV= mostpositive- cut (S) > 0 do
begin
S = V\ S,
C1= min { SiCi ∈: } ; k = index of the minimum;
C2= min { )},(),(: SSjiCij ∈ ; ( qp, ) = index of the minimum;

C3= min { } ),(;),(),(: yrSSjiijC ∈ = index of the;

C4= min { 32 ,CC }
if 1C < = 4C then CVbb kk −=
else if 32 CC <= then += pqpq uu CV
else −= ryry ll CV
end
end

Fig. 1- Cut canceling algorithm

If the supply/demand values are not allowed to change, then in the
algorithm of Fig. 1 only C2 and C3 are computed and the first if-then
part of the final statement is deleted

2.2 Minimum magnitude algorithm.
In the systems where modification cost is of minor importance, the
objective can be set to minimize the largest changing value. In such a
case, for a positive cut ( SS , ) define

D= { Sidi ∈/ },
P= { ),(),/( SSjipij ∈ },
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Q= { /ijq ( ),(), SSji ∈ }

now the cut will be canceled by solving the following problem

Minimize Max. QPD ∪∪
(5)
s.t.

)( i
si

i db −∑
∈

+ )(
),(),(

ij
ssji

ij pl −∑
∈

- )(
),(),(

∑
∈

+
ssji

ijij qu o≤

0≥id , Si ∈
0≥ijp , ),(),( SSji ∈

0≥ijq , ),(),( SSji ∈

In cases where the supplies/ demands are not permitted to change the
problem will be

Minimize Max. P∪ Q
(6)

s.t.
∑
∈si

ib + )(
),(),(

ij
pl

ssji
ij −∑

∈

- 0)(
),(),(

≤+∑
∈

ij
ssji

ij qu

0≥ijp , ),(),( SSji ∈

0≥ijq , ( ),(), SSji ∈

Theorem 2. Each component of the optimal solution of problem (5) is
equal to V ( SS , )/k, where k = QPD ∪∪ .

Proof. If Max. QPD ∪∪ is denoted by z, then the problem (5) can be
stated as

Minimize z
(7)

s.t.
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z - 0≥id , Si ∈
z - 0≥ijp , ( ),(), SSji ∈

z - 0≥ijq , ( ),(), SSji ∈

∑
∈si

id + ∑
∈ ),(),( ssji

ijp + ∑
∈ ),(),( ssji

ijq ),( SSV≥

0≥id Si ∈
0≥ijp , ( ),(), SSji ∈

0≥ijq , ( ),(), SSji ∈

The dual problem of (7) is as follows

Maximize v( ),ss 1+kw
(8)
s.t.

1
1

≤∑
=

k

i
iw

01 ≤−+ ik ww , Ki ,..2,1=
0≥iw , 1,..,.2,1 += Ki

now consider a (k+1)–vector ∗W with all entries equal to 1/k. ∗W is a
feasible solution of the dual problem (8). Set

∗
id = v ( ), SS / k, Si ∈ ,
∗
ijp = v ( ), SS /k, ( ),(), SSji ∈ ,
∗
ijq = v ( ), SS /k, ( ),(), SSji ∈ ,
∗z = v ( ), SS /k.

These values constitute a feasible solution for problem (7). The
objective functions of the primal problem (7) and the dual problem (8)
have the same value for these feasible solutions. Therefore, both are
optimal.
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According to this theorem, the counter part to the minimum cost
algorithm is as follows

Minimum magnitude algorithm

begin
while CV=mostpositive – cut (S) > 0 do
begin

SVS \=
;),(),( SSSSSk ∪∪=

,/ kCVbb ii −= for each Si ∈ ;

,/ KCVll ijij −= for each ( ), ji ),( SS∈ ;

,/ KCUuu ijij += for each ( ), ji );,( SS∈
end
end

Fig 2. Minimum magnitude algorithm.

For the systems where sbi
, are not allowed to change, the updating

instruction of ib is deleted from the above algorithm.

Theorem 3. The positive-cut canceling algorithm converges to a
feasible flow network in at most O ([nB+ mL] MF (n, m)) time where
B=

vi∈
.max ib , L= .max

),( Aji ∈ ijl and MF (n, m) is time to compute a

maximum flow.

Proof. Computing the most positive cut is the most important step at
each iteration. McCormick et al., proved that a most positive cut can
be computed in O(Mc (m, n)) time, where Mc (m, n) is the running
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time of the fastest minimum cut algorithm in a network with m arcs and
n nodes (McCormick and Ervolina, 1994).

Clearly Mc (m, n) is less than or equal to the time of computing
maximum flow. The fastest known strongly polynomial maximum flow
algorithm is due to Goldberg and Tarjan (Goldberg and Tarjan, 1988)
with MF (m, n) = O(nmlog ( mn /2 ) time order.

In the algorithm, if the procedure mpositive-cut (S) retunes a
negative value the algorithm terminates and the resulting flow network
is feasible, since it contains no positive cut. Otherwise a most positive
cut (i.e. S) with positive value CV is returned.
In the next steps of the algorithms the networks data are modified in at
most o(n+m) time, If after the modification ijl the data have the values
l′, u′and b′ then ijíj ll ≤' , ijij UU ≥′ for each ( Aji ∈), and ii bb <′

for each Vi ∈ and at least one of these inequalities is strict. This
means the next most positive cut (to be found in the next iteration, if it
exists) has a value strictly less than current CV. By the assumption of
integrality of the data, this decrease is at least one unit.

Now consider that

V ( ≤), SS ∑
∈si

ib + ∑
∈ ),(),( SSji

ijl ≤ nB+ mL

Therefore the maximum number of iterations in the algorithms (while
loop) will nB+mL and, hence the overall time order of both algorithms
is O ((B+mL) nmlog ( ]/2 mn )) �

3. Conclusion
In this article, we considered flow networks that, due to change of
application properties were impractical or infeasible. In order to
convert such networks to feasible ones, their structural properties, i.e.
arcs’ capacity, flow lower bounds and supply/demand values, have to
be adjusted. A mathematical model for minimization of total adjusting
cost was constructed and solved. Analyzing the model showed that the
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optimal solution included only one component’s change in the network
and the amount of change was equal to the value of a positive cut.

Based on the above result, a polynomial time algorithm was
presented to find and apply the optimal solution to the network.
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