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Abstract
In this paper we presented a version of the entropy estimator in view of
Vasicek (1976) and Ebrahimi et al., (1994). Some of its properties
and a comperative study of this estimators are considered.
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Introduction
Shannon entropy has an important role in information theory. In fact,
the amount of uncertainty related to the observation of the random
variable X with pdf f is measured by Shannon entropy which is defined
as ))(log()( XfEfH −= .

There is an extensive literature on the nonparametric estimation of
the Shannon entropy, for instance Ahmad et al., (1976), Vasicek
(1976), Joe (1987), Arizono et al., (1989), Makkadem (1989), Van Es
(1992), Ebrahimi et al., (1994), Correa (1995) and Beirlant et al.,
(1997).

One method for the nonparametric estimation of entropy which is
considered by many authors, is the estimation of entropy as
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from continuous probability density function or pdf f with some
estimation of density function.

On the other hand, from the definition of entropy )( fH , it can be
easily seen that
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and the estimation of )(1 pF
dp
d − can be derived by empirical

distribution function via replacement of the derivation operator by a
difference operator.

Based on order statistics, Vasicek (1976) proposed the entropy
estimator as
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where nYY << ...1 are order statistics of the random variables

nXX ,...,1 and m is a positive integer less than or equal to
2
n , and is

called a window size.
Ebrahimi et al., (1994), expressed that the Vasicek estimator in the

state of mi ≤ and 1+−≥ mni is not a suitable formula for

)(1 pF
dp
d − . Therefore, they have presented two modified estimators,

one of them is better and as follows
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that a, b are two known constants such that 1)( ≈≤≤ bXaP .
In the next sections of this paper, we have modified the estimator
dH , and derived some characterization results of it. Finally, we have

done a comparative study of the entropy estimators on using a
simulation results.

Properties of the Modified Estimator
In Ebrahimi et al., (1994) in which the estimator dH has been
introduced, it is assumed that the random variable X has bounded
support, a and b are the lower and upper bounds of the support,
respectively (for Uniform (0, 1) distribution, 1,0 == ba ); for the case
X has lower (upper) bound, then )(ba is the lower (upper) bound of
the support (for Exponential (1) distribution, 0=a , ksxb += ). Also
for the case X has unbounded support, ksxa −= and ksxb += , in
which x and s are mean and standard deviation of sample,
respectively.

Considering ba, as above has some problems which are listed as
follows:

First, because the estimation is nonparametric, no information about
the data distribution form and the support of it should be used, and in
the situation where the distribution form and the context of data are
unknown, therefore its support is unknown too.
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Second, from our simulation results, if the data is generated from a
longer tailed distribution, the amount of k should be increased as
sample size increases (for example in lognormal(0,1) distribution, for
sample size 30, k=5 is appropriate but for sample size 100, k should be
selected at least 7). Specially, if underling distribution is skewed
Normal, even with known context of data, the interval ksx −( , )ksx +
is not suitable.

Therefore, on assuming that the extreme values nY and 1Y are not
outliers, we propose range of the observations as follows:
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For the case that there are outliers in the sample, we can use the
methods which can tackle the outliers (if we look at the entropy
estimator as arithmetic mean of the values )}(ˆlog),...,(ˆlog{ 1 nxfxf −− ,
we can use robustness methods).

Thirdly, according to the results of our simulation, we have observed
that the behavior of window size in dH and vH are noticeable. In
some distributions, there are a big difference between the window size
which causes minimum bias and minimum MSE (mean square errors).
So, for solving this problem, we propose the following factors:
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Our modified estimator in this note is kH . The following theorems
gives, constancy of MSE under linear transformation of the data,
consistency and asymptotic unbias.

Theorem 1. Let nXX ,...,1 be a sequence of iid random variables with
entropy )()( fH X , and let ltXW ii += where +∞<<−∞> lt ,0 and

i=1,…n. Let ),()( nmH X
k and ),()( nmH W

k be entropy estimators for
)()( fH X , )()( gH W respectively (here g is pdf of W). Then the

following properties hold:

i) )),,(()log()),(( )()( nmHEtnmHE X
k

W
k +=

ii) )).,(()),(( )()( nmHMSEnmHMSE X
k

W
k =

Proof: On using the definition of ),( nmH k , we have;
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Theorem 2. Let C be the class of continuous density functions with
finite expectation and entropy and let nXX ,...,1 be a random sample
from Cf ∈ , then )(),( fHnmHk  → in probability as

∞ →mn, and 0 →
n
m .
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Proof. From Vasicek (1976), )(),( fHnmH v  → in probability, on
the other hand, it can be easily shown that ),(),( nmHnmH vk ≥ ,
therefore, we will show that

0),(),(  →− nmHnmH vk as ∞ →mn, and 0 →
n
m .

We can write; mnmnmnmnvk DCBAnmHnmH +++=− ),(),(
where
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Theorem 3. Under the assumptions of the theorem 2,
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n
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From Vasicek (1976), for the uniform distribution we have
0)),((  →nmHE v .

Note that from mean value theorem, we can write;
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where F is cdf of X, and for some ),( mimii YYc +−∈ .
Consequently; )()),(( fHnmHE v  → as ∞ →mn, .
And via, 0)),(),((0  →−≤ nmHnmHE vk , we have

)()),(( fHnmHE k  → .

Simulation Results
In this section, we give the results of simulation studies of the bias and
MSE(mean square errors) for three entropy estimators dv HH , and

kH for some distributions such as Uniform (0,1), Exponential (1),
Normal (0,1) and Lognormal (0,1). These results are based on more
than 5000 samples of different sizes.

The best choice of the window size are given in the table 1.
According to this table, we see that the window size which causes
minimum bias is very different from the window size which causes
minimum MSE for dH in the uniform distribution and for vH in the
exponential, normal and lognormal distributions. This means that there
is a big trade off between bias and variance (bias and variance move on
opposite direction). The next point is that the window size which

causes minimum bias in the dH for uniform (0, 1) is equal to
2
n which

increases as n increases that not suitable.
For campration the amount of reduction in bias and MSE,

]5.0[ += nm and ][ nm = is used and results are given in tables 2 to
5. It can be compared with tables of Inverardi (2003), our modified
estimator have smaller MSE with respect to the Vasicek(1976), van Es
(1992), Ebrahimi et al., (1994) and Correa (1995).

Here, because the appropriate selection problem of k, we don't
consider dH for exponential and lognormal distributions, and for
normal distribution k=5 is selected, as considered in Ebrahimi et al.,
(1994).
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Table 1

a: Best window size to obtain minimum bias absolute and MSE entropy estimation
b: Best window size to obtain minimum bias absolute (MSE) entropy estimation.

Table 2. Uniform (0,1) 

kH dH vH   

MSE |Bias| MSE |Bias| MSE |Bias| m n 
0.0121
0.0080 

0.0201
0.0012 

0.0106
0.0080 

0.0859
0.0753 

0.0754
0.0838 

0.2603
0.2772 

4
5 20 

0.0050
0.0030 

0.0173
0.0023 

0.0061
0.0050 

0.0665
0.0590 

0.0438
0.0483 

0.2011
0.2122

5
6 30 

0.0030
0.0020 

0.0125
0.0010 

0.0040
0.0030 

0.0559
0.0504 

0.0314
0.0344 

0.1712
0.1801 

6
7 40 

0.0021
0.0010 

0.0076
0.0013 

0.0020
0.0020 

0.0472
0.0429 

0.0241
0.0263 

0.1508
0.1583 

7
8 50 

0.0010 0.0119 0.0020 0.0409 0.0197 0.1371 8 60 
0.0008 0.0039 0.0015 0.0351 0.0136 0.1144 9 80 
0.0005 0.0037 0.0010 0.0311 0.0105 0.1015 10 100 

Table 3. Normal(0,1) 

kH dH vH   

MSE |Bias| MSE |Bias| MSE |Bias| m n 
0.0507
0.0449 

0.1433
0.1203 

0.0552
0.0710 

0.1631
0.2060 

0.1418
0.1566 

0.3314
0.3530 

4
5 

20 

0.0283
0.0254 

0.0916
0.0730 

0.0401
0.0508 

0.1464
0.1798

0.0801
0.0841 

0.2443
0.2517

5
6 

30 

0.0189
0.0173 

0.0653
0.0504 

0.0321
0.0410 

0.1357
0.1626 

0.0533
0.0565 

0.1959
0.2034 

6
7 

40 

0.0136
0.0128 

0.0451
0.0323 

0.0278
0.0341 

0.1305
0.1530 

0.0392
0.0411 

0.1655
0.1706 

7
8 

50 

0.0104 0.0275 0.0296 0.1414 0.0311 0.1423 8 60 
0.0075 0.0185 0.0201 0.1137 0.0201 0.1137 9 80 
0.0058 0.0085 0.0143 0.0297 0.0143 0.0927 10 100 

U(0,1) Exp(1) N(0,1) LN(0,1)

kH dH vH kH vH kH dH vH kH vH
n a b a a b a a b a b
20
30
40
50
60
70
80
90
100
300
500

8
9
9
10
11
12
13
13
13
18
24

10(10)
15(15)
20(15)
25(17)
30(21)
35(25)
40(27)
45(30)
50(31)
150(45)
250(99)

3
4
4
5
5
6
6
6
14
17
20

5
5
6
6
6
7
7
7
8
12
14

4(4)
6(5)
7(6)
25(7)
30(8)
35(9)
40(11)
45(11)
50(13)
55(23)
66(39)

10
13
12
11
11
11
11
11
11
14
16

2
2
3
3
3
4
4
4
4
6
9

3(3)
4(4)
4(4)
5(5)
6(6)
7(7)
7(7)
8(8)
9(9)

57(14)
88(37)

4
4
4
5
6
6
6
6
7
10
12

10(4)
15(6)
20(7)
21(8)
21(9)
20(10)
20(10)
20(12)
20(11)
22(15)
24(19)
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Table 4. Exponential(1)

Table 5. LogNormal(0,1) 

kH vH   
MSE |Bias| MSE |Bias| m n 
0.1020
0.1105 

0.0128
0.0378 

0.1607
0.1619 

0.2628
0.2549 

4
5 20 

0.0684
0.0756 

0.0221
0.0605 

0.0941
0.0923 

0.1894
0.1785 

5
6 30 

0.0514
0.0573 

0.0402
0.0710 

0.0632
0.0628 

0.1346
0.1265 

6
7 40 

0.0418
0.0467 

0.0504
0.0759 

0.0473
0.0471 

0.1085
0.1012 

7
8 50 

0.0365 0.0545 0.0388 0.0906 8 60 
0.0265 0.0546 0.0289 0.0732 9 80 
0.0204 0.0386 0.0209 0.0543 10 100 

Conclusions
In this paper, we have proposed a version of Shannon entropy
estimator. Based on simulation results our estimator have smaller bias
absolute and MSE than other estimators that mentioned and referred to
them in this note.
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