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Abstract
In this paper we presented a version of the entropy estimator in view of
Vasicek (1976) and Ebrahimi et al., (1994). Some of its properties
and a comperative study of this estimators are considered.
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Introduction

Shannon entropy has an important role in information theory. In fact,
the amount of uncertainty related to the observation of the random
variable X with pdf f is measured by Shannon entropy which is defined
as H(f)=E(- log f(X)).

There is an extensive literature on the nonparametric estimation of
the Shannon entropy, for instance Ahmad et al., (1976), Vasicek
(1976), Joe (1987), Arizono et al., (1989), Makkadem (1989), Van Es
(1992), Ebrahimi et al., (1994), Correa (1995) and Beirlant et al.,
(1997).

One method for the nonparametric estimation of entropy which is
considered by many authors, is the estimation of entropy as

H (f)=- %é log fn(Xi) based on the random sample X.,..., X,
i=1
from continuous probability density function or pdf f with some
estimation of density function.
On the other hand, from the definition of entropy H(f), it can be

easily seen that



?2Pf Pasha, E., et al., 11JS, 6 (Math.),
2005

_ d .., 0
H(f)—ngOgEF (P)3h.
and the estimation of dipF'l(p) can be derived by empirical

distribution function via replacement of the derivation operator by a
difference operator.

Based on order statistics, Vasicek (1976) proposed the entropy
estimator as

I a

14, Ty, -Y 1
H,(m,n)==Q logj—=—="y,

n%l T gﬂ Y

1 n b

such that

1Yiem =Y, i+m3n

Yo=Y, i-m£l

where Y, <..<Y, are order statistics of the random variables

. L n .
X X, and m is a positive integer less than or equal to > and is

called a window size.
Ebrahimi et al., (1994), expressed that the Vasicek estimator in the
state of i£Em and i3 n- m+1lis not a suitable formula for

dip F'(p). Therefore, they have presented two modified estimators,

one of them is better and as follows

Hd(m,n)=%é log i
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L 1£iEm
: m m
where  d, ={2 m+l1£iE£n-m-1,
: )
i1+ n-meEi£n
T m+l
i i-1 .
iZin=a+—(Y,-a) 1Eif£m
. m
and :'Zi: i m+l1£if£n-m-1
: .
iz, =b-L-v) n-mEi£n
| m

that a, b are two known constants such that P(a £ X £b) » 1.

In the next sections of this paper, we have modified the estimator
H,, and derived some characterization results of it. Finally, we have

done a comparative study of the entropy estimators on using a
simulation results.

Properties of the Modified Estimator
In Ebrahimi et al., (1994) in which the estimator H, has been

introduced, it is assumed that the random variable X has bounded
support, a and b are the lower and upper bounds of the support,
respectively (for Uniform (0, 1) distribution, a =0, b =1); for the case
X has lower (upper) bound, then a(b) is the lower (upper) bound of
the support (for Exponential (1) distribution, a =0, b =X +ks). Also
for the case X has unbounded support, a=X- ks and b =X +ks, in
which X and s are mean and standard deviation of sample,
respectively.

Considering a, bas above has some problems which are listed as

follows:

First, because the estimation is nonparametric, no information about
the data distribution form and the support of it should be used, and in
the situation where the distribution form and the context of data are
unknown, therefore its support is unknown too.
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Second, from our simulation results, if the data is generated from a
longer tailed distribution, the amount of k should be increased as
sample size increases (for example in lognormal(0,1) distribution, for
sample size 30, k=5 is appropriate but for sample size 100, k should be
selected at least 7). Specially, if underling distribution is skewed
Normal, even with known context of data, the interval (X - ks, X +ks)

Is not suitable.
Therefore, on assuming that the extreme values Y, and Y, are not

outliers, we propose range of the observations as follows:
Y - Y -Y
»—L and b, =Y, +2—=*.
n-1 n-1
For the case that there are outliers in the sample, we can use the
methods which can tackle the outliers (if we look at the entropy

estimator as arithmetic mean of the values {- log f (x,).....- log f (x )},
we can use robustness methods).

Thirdly, according to the results of our simulation, we have observed
that the behavior of window size in H, and H, are noticeable. In
some distributions, there are a big difference between the window size

which causes minimum bias and minimum MSE (mean square errors).
So, for solving this problem, we propose the following factors:

a, =V, -

L —— 1£i£m
: i-1+m
di={2 _ m+1E£i£n-m if m<g
jre o1t n-m+1£i£n
1T n-i+m
S — 1£iEm
dzt I'l+m .
N | _ if m=—=
M+ — n- m+1£i£n
T n-i+m
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Our modified estimator in this note is H,. The following theorems

gives, constancy of MSE under linear transformation of the data,
consistency and asymptotic unbias.

Theorem 1. Let X,,..., X, be a sequence of iid random variables with
entropy H(f), and let W, =tX, +1 where t>0,-¥ <| <+¥ and
i=1,...n. Let HX(m,n) and H’(m,n) be entropy estimators for
HO(f), H™(g) respectively (here g is pdf of W). Then the
following properties hold:

i) E(H" (m,n)) = log(t) + E(H (m,n)),
i) MSE(H " (m,n)) = MSE(H ) (m, n)).

Proof: On using the definition of H, (m,n), we have;

a =ta® +1 bM) =tal) +1
Z8 =zl 28] =1z )+
| U

1 n :l: Z(W) _ Z(_\N)l

H (m,n) ==§ logj —*——tmy
N g g

) 'n b

=log(t) + H{ (m,n)
Therefore,
E(H (m,n)) =log(t) + E(H (m,n))
Var(H (m,n)) =var(H (m,n)).

Theorem 2. Let C be the class of continuous density functions with
finite expectation and entropy and let X,,..., X, be a random sample

from f1 C, then H, (m,n) #4® H(f) in probability as
nm%»%u® ¥ and mg/§(4® 0.
n
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Proof. From Vasicek (1976), H,(m,n) $%4® H(f) in probability, on
the other hand, it can be easily shown that H,(m,n)3 H, (m,n),
therefore, we will show that

H, (mn)- H,(mn)%®0 as nm3AB®¥ and ms'/§(4®0.
n

We can write; H, (m,n)- H,(m,n)=A_, +B_ +C_ +D,
where

N

18 12, -2 .0 14 2
Amn - IO s 1+m 1-m /’ Cmn - IO —_
nia=1 g’:\YHm_Yi—mg n'a:1 gdl
1 4 1z, -2 1 1 &
B,, =— logj ———2y, D, =— log—
i n i:namﬂ g’:\ Yi+m - Yi-m n i:namﬂ g d|
Via some algebraic calculation, we have
OEEé Iog££mlog2.
im di n
Hence, C. %® 0 as — %4® 0.
n
Now; we have
B _l Q lo IleLm_Zi—ml'l
" n i:namﬂ g’:\ Yi+m Yi—m g
p o je& b -v O
:ié Iogl’1+i n__n %;
N j= T m Yn Yj+n—2m q)
For 1£ j £ m, we have
i -Y -Y -Y
ogt_Bu¥o o B-¥y o B-Y, (a.s)
m Yn - Yj+n—2m Yn - Yj+n—2m Yn - Yn—m
m b,-Y m b, -Y
O£B, £—logl+—"—}f——11° a.s
m £ log{l+ = P (@)

n "~ 'j+n-2m n n-m
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and E(b, - Y.) = EQ 1y £ " E(x)<¥.
n-1 n-1

Therefore, P(b,-Y, =¥) =0, also P(Y -Y. ,=0)=0,

b,-Y
then P(——"=¥)=0 and E L) <¥.
( n Yn—m ) ( Yn—m)
i uo
Now, via Markov inequality, ?.b—Y T3%.® 0 in probability as
) o}

M e o. Consequently B,,, %4® 0.
n
Similarly D,,, %® 0 and A, $4® 0.

Theorem 3. Under the assumptions of the theorem 2,
E(H, (m,n) %® H(f) as n,m%:® ¥ and m%@ 0.

Proof. In proof of theorem 2, we obtained E(———— ”_Y L) <¥,"

n n-m
and

0£E(B, )E— E(—YY)

Therefore E(B,,,) #4® 0 as M %.® 0 and similarly E(A,,) %:® 0.
n

Hence; 0£ E(H, (mn)- H,(Mn))%®0 as n,m%® ¥ and T 3%®0.
n

From Vasicek (1976), for the uniform distribution we have
E(H,(m,n))%u® 0.
Note that from mean value theorem, we can write;

H OO (m,n) = nan log] | F (Vi) mF(Y. i
1= ]. 2—
t n

T o
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=HO (mn) += 4 log f(¢,)
N iz
where F is cdf of X, and for some ¢, T (Y,..,Y....) .
Consequently; E(H,(m,n)) 33.® H(f) as n,m3u® ¥ .
And via, 0E£ E(H, (m,n)- H,(m,n)) $® 0, we have

E(H,(m,n)) %.® H(f).

Simulation Results
In this section, we give the results of simulation studies of the bias and
MSE(mean square errors) for three entropy estimators H,,H, and

H, for some distributions such as Uniform (0,1), Exponential (1),

Normal (0,1) and Lognormal (0,1). These results are based on more
than 5000 samples of different sizes.

The best choice of the window size are given in the table 1.
According to this table, we see that the window size which causes
minimum bias is very different from the window size which causes
minimum MSE for H, in the uniform distribution and for H, in the
exponential, normal and lognormal distributions. This means that there

is a big trade off between bias and variance (bias and variance move on
opposite direction). The next point is that the window size which

causes minimum bias in the H, for uniform (0, 1) is equal to gwhich

increases as n increases that not suitable.

For campration the amount of reduction in bias and MSE,
m = [«/ﬁ +0.5]and m= [\/ﬁ] is used and results are given in tables 2 to
5. It can be compared with tables of Inverardi (2003), our modified
estimator have smaller MSE with respect to the Vasicek(1976), van Es
(1992), Ebrahimi et al., (1994) and Correa (1995).

Here, because the appropriate selection problem of k, we don't
consider H, for exponential and lognormal distributions, and for
normal distribution k=5 is selected, as considered in Ebrahimi et al.,
(1994).
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Table 1
uU(0,1) Exp(1) N(0,1) LN(0,1)
H k H d H v H k H v H k H d H v H k H v
n a b a a b a a b a b
20 8 10(10) 3 5 4(4) 10 2 3(3) 4 10(4)
30 9 15(15) 4 5 6(5) 13 2 4(4) 4 15(6)
40 9 20(15) 4 6 7(6) 12 3 4(4) 4 20(7)
50 10 25(17) 5 6 25(7) 11 3 5(5) 5 21(8)
60 11 30(21) 5 6 30(8) 11 3 6(6) 6 21(9)
70 12 35(25) 6 7 35(9) 11 4 7(7) 6 20(10)
80 13 40(27) 6 7 40(11) 11 4 7(7) 6 20(10)
90 13 45(30) 6 7 45(11) 11 4 8(8) 6 20(12)
100 13 50(31) 14 8 50(13) 11 4 9(9) 7 20(11)
300 18 150(45) 17 12 55(23) 14 6 57(14) 10 22(15)
500 24 250(99) 20 14 66(39) 16 9 88(37) 12 24(19)

a: Best window size to obtain minimum bias absolute and MSE entropy estimation
b: Best window size to obtain minimum bias absolute (MSE) entropy estimation.

Table 2. Uniform (0,1)

H, H, H,
n m | |Biasj MSE | |Biasj MSE | |Bias] MSE
o0 | 4 | 02603 00754 | 00859 00106 | 00201 00121
5 | 02772 0.0838 | 0.0753 0.0080 | 0.0012  0.0080
30 | | 02011 00438 | 00665 0.0061 | 0.0173  0.0050
6 | 02122 0.0483 | 0.0590 0.0050 | 0.0023  0.0030
4 | 8 | 0172 00314 | 00559 0.0040 | 0.0125  0.0030
7 | 01801 0.0344 | 0.0504 0.0030 | 0.0010  0.0020
5o | 7 | 01508 00241 | 00472 00020 | 00076 00021
8 | 01583 0.0263 | 0.0429 0.0020 | 0.0013  0.0010
60 | 8 [ 01371 0.0197 | 0.0409 0.0020 | 0.0119  0.0010
80 | 9 [ 01144 00136 | 00351 0.0015 | 0.0039  0.0008
100 | 10 | 0015 0.0105 | 0.0311 0.0010 | 0.0037  0.0005
Table 3. Normal(0,1)
H v H d H k
n m | |Biasj MSE | |Biasj MSE | |Bias] MSE
20 | 4 | 03314 01418 | 0.1631 0.0552 | 0.1433  0.0507
5 | 03530 0.1566 | 0.2060 0.0710 | 0.1203  0.0449
30 | 5 | 02443 00801 | 0.1464 0.0401 | 0.0916  0.0283
6 | 02517 0.0841 | 01798  0.0508 | 0.0730  0.0254
40 | 6 | 01959 0.0533 | 0.1357 0.0321 | 0.0653 0.0189
7 | 02034 0.0565 | 0.1626 0.0410 | 0.0504  0.0173
50 | 7 [ 01655 0.0392 | 0.1305 0.0278 | 0.0451 0.0136
8 | 01706 0.0411 | 0.1530 0.0341 | 0.0323  0.0128
60 | 8 [ 01423 00311 | 01414 0.0296 | 0.0275  0.0104
80 | 9 [ 01137 00201 | 01137 0.0201 | 0.0185  0.0075
100 | 10 | 0.0927  0.0143 | 0.0297 0.0143 | 0.0085  0.0058
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Table 4. Exponential(1)

H v H k

n | m| |Biasf MSE | |Bias] MSE

o0 | 4 | 02528 01215 | 00109  0.0552
5 | 02553 0.1236 | 0.0248  0.0560

30 | 5 | 01905 00744 | 0.0013  0.0391
6 | 01904 0.0749 | 0.0254  0.0405

4 | 6 | 01532 00506 | 0.0102  0.0286
7 | 01527  0.0507 | 0.0317  0.0310

5o | 7 | 01312 00384 | 0.0235 0.0239
8 | 0.1304 0.0385 | 0.0369  0.0242

60 | 8 | 0.1094 0.0306 | 0.0149  0.0188
80 | 9 | 0.0898 0.0215 | 0.0286 0.0144
100 | 10 | 00771  0.0171 | 0.0261  0.0119

Table 5. LogNormal(0,1)

H v H k

n m | |Bias] MSE | |Bias] MSE

o0 | 4| 02628 01607 | 00128  0.1020
5 | 02549 0.1619 | 0.0378  0.1105

a0 | 5 | 01894 00941 | 00221 0.0684
6 | 01785 0.0923 | 0.0605  0.0756

4 | 6 | 01346 00632 | 00402 0.0514
7 | 01265 0.0628 | 0.0710  0.0573

5o | 7 | 01085 00473 | 00504 0.0418
8 | 01012  0.0471 | 0.0759  0.0467

60 | 8 | 0.0906 0.0388 | 0.0545  0.0365
80 | 9 | 00732 0.0289 | 0.0546  0.0265
100 | 10 | 0.0543  0.0209 | 0.0386  0.0204

Conclusions

In this paper, we have proposed a version of Shannon entropy
estimator. Based on simulation results our estimator have smaller bias
absolute and MSE than other estimators that mentioned and referred to
them in this note.
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