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Abstract 
We present a multi-objective genetic algorithm for mining highly 
predictive and comprehensible classification rules from large data-
bases. We emphasize predictive accuracy and comprehensibility of the 
rules. However, accuracy and comprehensibility of the rules often 
conflict with each other. This makes it an optimization problem that is 
very difficult to solve efficiently. We have proposed a multi-objective 
evolutionary algorithm called Improved Niched Pareto Genetic 
Algorithm (INPGA) for this purpose. We have compared the rule 
generation by INPGA with that by simple genetic algorithm (SGA) 
and basic Niched Pareto Genetic Algorithm (NPGA). The 
experimental result confirms that our rule generation has a clear edge 
over SGA and NPGA. 
 
Keywords: Simple genetic algorithm, Pareto optimal solutions, 
                    Niched Pareto genetic algorithm, Data mining 
 
1. Introduction 
The commercial and research interests in mining for classification 
rules is increasing rapidly, because the amount of data being generated 
and stored in databases of organizations is already enormous and 
continues to grow very fast. This large amount of stored data normally 
contains valuable hidden knowledge, which if harnessed could be 
used to improve the decision-making process of an organization. For 
instance, data about previous sales might contain interesting 
relationships between products, customer segmentation and buying 
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habits of customers. The discovery of such relationships can be very 
useful to efficiently manage the sales of a company. However, the 
volume of the archival data often exceeds several gigabytes and 
sometimes-even terabytes such as enormous volume of data is beyond 
the manual analysis capability of human beings. Thus, there is a clear 
need for developing automatic methods for extracting knowledge from 
data that not only has a high predictive accuracy but also is 
comprehensible by users (Fayyad, et al., 1996; Freitas, 1997; Freitas, 
1999). The user should be able to understand the mining system’s 
results and combine them with his/her knowledge to make a well-
informed decision, rather than blindly trusting the incomprehensible 
output of a “black box” system. 

Evolutionary algorithms (EAs) have inspired many research efforts 
for optimization as well as rule generation (Goldberg, 1989; Fonseca 
and Fleming, 1995). Traditional rule generation methods, are usually 
accurate, but have brittle operations. Evolutionary algorithms on the 
other hand provide a robust and efficient approach to explore large 
search space. One of the EA called simple genetic algorithm (SGA) 
introduced by J.H. Holland (1975) (Goldberg, 1989; Davis, 1991), and 
(Michalewicz, 1994) is good for rule generation satisfying a single 
objective. However, practical rule generation is naturally posed as 
multi-objective problems with two criteria:  i) predictive accuracy and 
ii) comprehensibility (Freitas, 1999). The SGA normally handles 
problems with such criteria by converting them into a single objective 
problem. The single objective is formed from a linear combination of 
the multiple objective functions. However, this approach is unsatis-
factory due to the nature of the optimality conditions for multiple 
objectives. In the presence of multiple and conflicting objectives, the 
resulting optimization problem gives rise to a set of optimal solutions, 
instead of just one optimal solution. Multiple optimal solutions exist 
because no single solution can be a substitute for multiple conflicting 
objectives. In order to overcome this difficulty we have proposed the 
multi-objective genetic algorithm called INPGA an improved version 
of NPGA (Schaffer, 1984, 1985) for rule generation. 

We propose to use INPGA to discover high-level prediction rules of 
the form: 
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IF some conditions hold on the values of a set of predicting attributes, 
THEN predict a value for the goal attribute. In other words, the value 
of a special attribute called the goal attribute is predicted by the values 
given for other attributes called the predicting attributes.  
 The INPGA rule generation is to associate each individual of the 
population with the same predicted class, which is never modified 
during the running of the algorithm. We would need to run the INPGA 
at least for the specified number of classes. So that in the ith run, the 
algorithm discovers only rules ith class (Jainkow, 1993).  We shall use 
the results reported in (Freitas, 1999) for comparison with our results. 
By comparison it has been observed that the predictive accuracy and 
comprehensibility is encouraging in INPGA over to SGA and NPGA. 
 This paper is organized as follows. Section 2 discusses the SGA for 
classification rule generation. In section 3 we describe evolutionary 
algorithms for multi-objective problems. In section 4, we have 
discussed the improved Niched Pareto genetic algorithm. The 
implementation of our simulation experiments is discussed in section 
5. Finally, section 6 concludes this paper. 
 
2. Using SGA for Classification Rule Generation 
In this section we review the function of SGA for rule generation. 
Genetic algorithms are probabilistic search algorithms characterized 
by the fact that a number N of potential solutions (called individuals Ik 

∈Ω , where Ω  represents the space of all possible individuals) of the 
optimization problem simultaneously sample the search space.  This 
population P= {I1, I2, . . IN} is modified according to the natural 
evolutionary process: after initialization, selection S: IN  →  IN and 
recombination Я : IN  →  IN  are executed in a loop until some 
termination criterion is reached. Each run of the loop is called a 
generation and P (t) denotes the population at generation t. 
The selection operator is intended to improve the average quality of 
the population by giving individuals of higher quality a higher 
probability to be copied into the next generation.  Selection thereby 
focuses on the search of promising regions in the search space.  The 
quality of an individual is measured by a fitness function f: P→ R. 
Recombination changes the genetic material in the population either 
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by crossover or by mutation in order to obtain new points in the search 
space. Fig.1 depicts the steps that are performed in SGA. 

The following subsection discusses the individual representations, 
fitness function, and genetic operators used for classification rule 
discovery. 

 
Figure1- Flow diagram of SGA. 

 
2.1. Genetic Representations 
Each individual in the population represents a candidate rule ‘ℜ ’ of 
the form “if” A then C”. The antecedent of this rule can be formed by 
a conjunction of at most n – 1 attributes, where n is the number of 
attributes being mined. Each condition is of the form Ai = Vij, where 
Ai is the i-th attribute and Vij is the j-th value of the i-th attribute’s 
domain. The consequent consists of a single condition of the form G = 
Vl, where G  is the goal attribute and  Vl is the l-th value of the goal 
attribute’s domain. The user specifies the goal attribute that is of 
interest to him.  
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A string of fixed size encodes an individual with n genes representing 
the values that each attribute can assume in the rule. This encoding is 
shown in fig. 2. The algorithm automatically chooses the best goal 
attribute to put in the consequent, for a given rule antecedent. If an 
attribute is not present in the rule antecedent, the corresponding value 
in gene is “-1”. This value is a flag to indicate that the attribute does 
not occur in the rule antecedent. Hence, this encoding effectively 
represents a variable-length individual (rule). 
 

 
Figure 2- Chromosome Representation. 

 
2.2. Fitness Function 
As discussed in section 1, the discovered rules should have (a) high 
predictive accuracy and (b) high comprehensibility. In this subsection 
we discuss how these multiple criteria can be incorporated into a 
single objective fitness function. 
 

1. Comprehensibility Metric 
There are various ways to quantitatively measure rule 
comprehensibility. The standard way of measuring comprehensibility 
is to count the number of rules and the number of conditions in these 
rules. If these numbers increase, then the comprehensibility decreases. 

If a rule can have at most ‘ cM ’ conditions, the comprehensibility 
‘ς ’ of a rule ‘ℜ ’ can be defined as: 

)(ℜς = 1 – ( cMc /)(ℜΝ ), 
where ‘ )(ℜcN ’ is the number of conditions in the rule ℜ . 
2. Predictive Accuracy 
As already mentioned, our rules are of the form IF A1 ∧   A2  THEN 
C. The antecedent part of the rule is a conjunction of conditions.  A 
very simple way to measure the predictive accuracy of a rule ‘ )(ℜP ’ 
is  

A

CA
P

&
)( =ℜ                                            (1) 
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where |A| is the number of examples satisfying all the conditions in 
the antecedent A and  |A & C | is the number of examples that satisfy 
both the antecedent A and the consequent C. Intuitively this metric 
measures predictive accuracy in terms of how many cases both 
antecedent and consequent hold out of all cases where the antecedent 
holds. 
A variation of (1) is: 

( )
A

CA
P

21&
)(

−
=ℜ                                   (2) 

where |A&C| is the number of examples that satisfy both the rule 
antecedent and the consequent. The term ½ is subtracted in the 
numerator of equation (1) to penalize rules covering few training 
examples. 

The fitness function is computed as the arithmetic weighted mean of 
comprehensibility and predictive accuracy. 
Finally, the fitness function is given by: 
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Where w1 and w2 are user-defined weights. 
 
2.3. Genetic Operators 
The crossover operator we consider is based on uniform crossover 
(Hand, 1997; Syswerda, 1989). There is a probability for applying 
crossover to a pair of individuals and another probability for swapping 
each gene (attribute)’s value in the genome (rule antecedent) of two 
individuals. After crossover is complete, the algorithm analyses if any 
invalid individual was created. If so, a repair operator is used to 
produce valid-genotype individuals. The mutation operator randomly 
transforms the value of an attribute into another value belonging to the 
same domain of the attribute.  
 Besides crossover and mutation, the insert and remove operators 
directly try to control the size of the rules being evolved. Thereby thus 
influence the comprehensibility of the rules. These two operators 
randomly insert and remove, respectively, a condition in the rule 
antecedent. These operators are not part of the regular GA. However, 
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we have introduced them here for suitability in our rule generation 
scheme.  
 
3. Evolutionary Algorithms for Multi-objective Problems 
There are many multi-objective problems requiring simultaneous 
optimization of several competing objectives. Formally it can be 
stated as follows: We want to find ),....,2,1( nxxxx = which maximizes 
the values of ‘p’ objective functions ))(),....,(2),(1()( xpfxfxfxF =  
within a feasible domain Ω . Generally the answer is not a single 
solution but a family of solutions called a Pareto-optimal set.  
 
Definitions 
(I) A vector ),....,2,1( puuuu = is said to dominate ),....,2,1( nvvvv =  if 
u  is partially greater than v , i.e. 

{ } { } iviupiiviupi :,...2,1,,.....3,2,1 ∈∃∧≥∈∀ . 
 
(II) A solution Ω∈x  is said to be Pareto-optimal with respect to Ω  
if there is no Ω∈'x  for which ( ))'(),...,'(2),'(1)'( xpfxfxfxFv ==  

dominates ( ))(),...(2),(1)( xpfxfxfxFu == .  
(III) For a given multi-objective problem )(xF , the Pareto-optimal set 

sP is defined as: 
)()'(:'| xFxFxxsP ≥Ω∈¬∃Ω∈=  

(IV) For a given multi-objective problem )(xF and Pareto optimal set 

sP , the Pareto front fP is defined as: 

(V) ( )sPxxpfxfxfxFufP ∈=== |)(),...(2),(1)(  

Optimization methods generally try to find a given number of 
Pareto-optimal solutions which are uniformly distributed in the 
Pareto-optimal set, such solutions provide the decision maker 
sufficient insight into the problem to make the final decision. Methods 
such as weighted sum, ε -constraint, and goal programming have been 
proposed to search for Pareto optima (Hwang and Yoon, 1981; 
Zeleny, 1982). However, an a priori articulation of the preferences to 
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the objectives is required, which is often hard to decide beforehand. 
Besides these methods can only find one solution at a time. Other 
solutions cannot be obtained without re-computation with the free 
parameters reset. 

By contrast, genetic algorithms (GAs) (Michalewicz, 1994) 
maintain a population and thus can search for many non-dominated 
solutions in parallel. GA’s ability to find a diverse set of solutions in a 
single run and its exemption from demand for objective preference 
information renders it immediate advantage over aforementioned 
techniques. A lot of multi-objective GAs (MOGAs) (Ziztler and 
Thiele, 1999; Horn, et al., 1994) have been proposed. Basically, an 
MOGA is characterized by its fitness assignment and diversity 
maintenance strategy. 

In fitness assignment, most MOGAs fall into two categories, non-
Pareto and Pareto-based. Non-Pareto methods use the objective values 
as the fitness value to decide an individual’s survival. Schaffer’s 
VEGA is such a method. The more recent Predator-prey approach 
(Laumanns, et al., 1998) is another one, where some randomly 
walking predators will kill a prey or let it survive according to the 
prey’s value in one objective. In contrast, Pareto based methods 
measure individuals fitness according to their dominance property. 
The non-dominated individuals in the population are regarded as 
fittest regardless of their single objective values. Since Pareto-based 
approaches respect better the dominance nature of multi-objective 
problems, their performance is reported to be better. 

Diversity maintenance strategy is another characteristic of MOGAs. 
It works by keeping the solutions uniformly distributed in the Pareto-
optimal set, instead of gathering solutions in a small region only. 
Fitness sharing (Goldberg and Richardson, 1987), which reduces the 
fitness of an individual if there are some other candidates nearby, is 
one of the most renowned techniques. Restricted mating, where 
matting is permitted only when the distance between two parents are 
large enough, is another technique. More recently, some parameter 
free techniques were suggested. The techniques used in SPEA (Ziztler 
and Thiele, 1999) and NSGA-II (Deb, et al., 2002) are two examples 
of such techniques. PAES (Knowles and Corne, 2000), SPEA (Ziztler 
and Thiele, 1999), and NSGA-II (Deb, et al., 2002) are representatives 
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of current MOGAs. They all adopt Pareto-based fitness assignment 
strategy and implement elitism, an experimentally verified technique 
known to enhance performance. 

In this paper a new improved Niched Pareto genetic algorithm has 
been proposed and is discussed in the section V. Its performance in 
rule generation has been compared with the Niched Pareto genetic 
algorithm and simple genetic algorithm. 
 
4. Our Proposed Niched Pareto Genetic Algorithm 
1. The Basic Niched Pareto GA 
The most widely implemented selection techniques for GAs is 
tournament selection. However, tournament selection assumes that we 
want a single answer to the problem. After a certain number of 
generations the population will converge to a uniform one. To avoid 
convergence and maintain multiple Pareto optimal solutions, the 
tournament selection is altered in two ways. First, Pareto domination 
tournament is introduced. Second, when a non-dominant tournament 
(i.e., a tie), sharing is implemented to determine the winner. 
 
A. Pareto Domination Tournaments: The binary relation of domina-
tion leads naturally to a binary tournament in which two randomly 
selected individuals are compared. If one dominates the other, it wins. 
Initially, such a small local domination criterion is used, but soon 
found that it produced insufficient domination pressure. There were 
too many dominated individuals in later generations. It seemed that a 
sample size of two was too small to estimate an individual’s true 
domination ranking. 

Because we wanted more domination pressure, and more control of 
that pressure, a sampling scheme is implemented, as follows. Two 
candidates for selection are picked at random from the population. A 
comparison set of individuals is also picked randomly from the 
population. Each of the candidates is then compared against each 
individual in the comparison set. If one candidate is dominated by the 
comparison set, and the other is not, the later is selected for 
reproduction. If neither or both are dominated by the comparison set, 
then we must use sharing to choose a winner, as we explained later. 
The sample size tdom (size of comparison set) gives us control over 
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selection pressure, or what we call domination pressure. The 
performance of the Niched Pareto GA is somewhat sensitive to the 
amount of domination versus sharing pressure applied (Ziztler and 
Thiele, 1999). 

A problem will arise if both candidates are on the current non-
dominated front since neither will be dominated. Even if the front, a 
small tdom could mean that neither appears dominated. And of course 
both could be dominated. How is a winner then chosen in such a tie? 
If we choose the winner at random, genetic drift will cause the 
population to converge to a single region of the Pareto front. To 
prevent this we implement a form of sharing when there is no 
preference between two individuals. 
 
B. Sharing on the Non-dominated Frontier: Fitness sharing was 
introduced by Goldberg and Richardson (1987) and has been applied 
successfully to a number of difficult real world problems. The goal of 
fitness sharing is to distribute the population over a number of 
different peaks in the search space, with each peak receiving a fraction 
of the population in proportion to the height of that peak. 

To achieve this distribution, sharing calls for the degradation of an 
individual objective fitness fi by niche count mi calculated for that 
individual. This degradation is obtained by simply dividing the 
objective fitness by the niche count to find the shared fitness: fi /mi. 
The niche count mi is an estimate of how crowded is the neighborhood 
(niche) of individual i. It is calculated over all individuals in the 
current population: mi = ∑ ∈Popj jidSh ]],[[ , where d[i,j] is the distance 
between individuals i and j and sh[d] is the sharing function. Sh[d] is a 
decreasing function of d[i,j], such that Sh[0]=1 and 0][ =≥ sharedSh σ . 
Typically, the triangular sharing function is used, where 

shareddSh σ/1][ −= for shared σ≤  and Sh[d]=0 for  shared σ . Here 

shareσ is the niche radius, fixed by the user at some estimate of the 
minimal separation desired or expected between the goal solutions. 
Individuals within shareσ distance of each other degrade each other’s 
fitness, since they are in the same niche, but convergence of the full 
population is avoided.  As one niche “fills up”, its niche count 
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increases to the point that its shared fitness is lower than that of other 
niches. 

Fitness sharing was originally combined with fitness proportionate 
(e.g., roulette wheel) selection. When sharing is combined with the 
more popular tournament selection, however, the Niched GA exhibits 
chaotic behavior. They wild fluctuations in niche subpopulations 
induced by the “naïve” combination of sharing and tournament 
selection can be avoided. Goldberg (1989) suggests the use of 
tournament selection with continuously updated sharing, in which 
niche counts are calculated not by using the current population, but 
rather the partly filled next generation population. This method was 
used successfully by Goldberg (1989), Deb et al. (2002) and Horn et 
al. (1994) on a Niching difficult problem. Also in, it was found 
empirically that sampling the population was sufficient to estimate the 
niche count and so avoid the )2(NO  comparisons needed to calculate 
exactly the mi .We incorporate both techniques (continuously updated 
sharing and niche count sampling) in the Niched Pareto GA.  

In any application of sharing, we cannot implement genotypic 
sharing, since we always have a genotype (the encoding). But Deb’s 
work indicated that in general, phenotypic sharing is superior to 
genotypic sharing. Intuitively, we want to perform sharing in a space 
we care “more about “, that is, some phenotypic space. Since we are 
interested in maintaining diversity along the phenotypic Pareto 
optimal front, which exists only in attribute space, it makes sense to 
perform our sharing in attribute space. 

When the candidate solutions are either both dominated or both 
non-dominated, it is likely that they are in the same equivalence class 
(in the partial order induced by the domination relation).  Because we 
are interested in maintaining diversity along the front, and most of the 
individuals in these equivalence classes can be labeled “equally” fit, 
we do not implement any form of fitness degradation according to the 
niche count. Instead, the “best fit” candidate is determined to be that 
candidate which has the least number of individuals in its niche and 
thus the smallest niche count. We call this type of sharing equivalence 
class sharing.  

Fig. 3 illustrates how this form of sharing should work between two 
non-dominated individuals. Here, we are maximizing along the x-axis 
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and minimizing on the y-axis. In this case the two candidates for 
selection are not dominated by the comparison set; but are in the 
Pareto optimal subset (the dashed region) of the union of the 
comparison set and the candidates. From a Pareto point of view, 
neither candidate is preferred.  But if we want to maintain useful 
diversity (i.e., a representative sampling of the Pareto frontier), it is 
apparent that it would be best to choose the candidate that has the 
smaller niche count. In this case, it is candidate 2. 
 

 
Figure 3- Equivalence Class Sharing. 

 

2.  The Improved Niched Pareto GA 
When the candidates are either both dominated or both non-
dominated, then in NPGA the equivalence class sharing is adopted. 
But, that is not the only measure; we have to also consider the 
measure that can maintain useful diversity in the Pareto set. The 
following approach can be suitable to achieve both the goal, it is 
called improved Niched Pareto Genetic Algorithm (INPGA). 
I) Find out the center of gravity of both niche radius (µ1and µ2) as: 

11 / share
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II) Calculate the standard deviation of each point of both radii. 
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III) The candidate having larger s.d. is chosen. 
Fig.4 illustrates how to maintain diversity in the overall proposed 
method. 

 
 

Figure 4- Equivalence Class Sharing with Tie Breaking. 
 
5. Simulation 
5.1 Description of the Dataset 
The simulation was performed using the zoo and nursery dataset. The 
zoo and nursery dataset used to test the algorithm was obtained from 
the UCI machine repository (http://www.ics.uci.edu/). This data set is 
normally used as a benchmark for evaluating algorithms performing 
classification task. 
 

Zoo Data: The zoo dataset contains 101 instances and 18 attributes. 
Each instance corresponds to an animal. In the preprocessing phase 
the attribute containing the name of the animal was removed, since 
this attribute has no generalization power. The attributes in the zoo 
data set are all categorical. The attribute names in the data set are as 
follows: hair (h), feathers (f), eggs (e), milk (m), predator (p), toothed 
(t), domestic (d), backbone (b), fins (fs), legs (l), tail (tl), catsize (c), 
airborne (a), aquatic (aq), breathes (br), venomous (v) and type (ty). 
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Except type and legs, all other attributes are Boolean. The goal 
attributes are type 1 to 7. The type 1 has 41 records, type 2 has 20 
records, type 3 has 5 records, type 4, 5, 6, & 7 has 13, 4, 8, 10 records 
respectively. 
 

Nursery Data: This dataset has 12960 records and nine attributes, all 
of them categorical. The ninth attributes is treated as class attribute 
and there are five classes: not_recom (NR), recommended ®, 
Very_recom (VR), Priority (P), and spec_prior (SP). The attributes 
and corresponding values are listed in table 1. 

The data-mining algorithm needs to discover rules by accessing the 
training set only. In order to do this, the algorithm has access to the 
values of both predicting attributes and the goal attribute of each 
example (record) in the training set. Once the training process is 
finished and the algorithm finds a set of classification rules, the 
predictive performance of these rules is evaluated on the test set, 
which was not seen during training.  

Note that, once we take into account the large number of attributes, 
this can be considered a difficult classification problem. 

 
Table 1-  Attributes and corresponding values for nursery data. 

 
 

Attrib.  Values 
Parents usual, pretentious, great_pret 

Has_nurs proper, less_proper, improper, critical, very_crit  
Form complete, completed, incomplete, foster 

Children 1,2,3, more  
Housing Convenient, less_conv, critical 

Finance Convenient, inconv 
Social Nonprob, slightly_prob, problematic 

Health Recommended, priority, not_recom 
 

5.2. Results 
The experiments have been performed using MATLAB 5.3 on a 
Linux server. The data specific parameters and the parameters, which 
are encountered during the rule discovery, are listed in table 2. 
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Table 2-  The data specific parameters. 
 

Dataset P Pc Pm tsize Rm  RI σshare 
Zoo  10

0 0.8  0.03 15 [0, 0.7] [0,0.8] 11 

Nursery 50
0 

0.7
5 

0.00
2 50 [0.2, 

0.8] [0, 0.6] 20 

 
P: population size, Pc: Probability of crossover, Pm: probability of mutation, tsize: tournament size, Rm: 
Removal operator, RI : Insert Operator, σshare: niche radius. 
  

For each of the dataset the simple genetic algorithm had 100 
individuals in the population and was run for 500 generations. The 
parameters values such as Pc , Pm , Rm, and RI were sufficient to find 
some good individuals. The following computational protocols are 
used in the basic Niched Pareto genetic algorithm as well as the 
proposed Improved Niched Pareto genetic algorithm for rule gene-
ration. The data set is divided into two parts: training set and test set. 
Here we have used 30% for training set and rest is test set. We 
represent the predicted class to all individuals of the population, 
which is never modified during the running of the algorithm. Hence, 
for each class we run the algorithms separately and get the 
corresponding rules. 
The generated rules of NPGA and INPGA have compared with the 
SGA and all rules are listed in table 3. 

Tables 3, 4 and 5 show the results generated by SGA, NPGA and, 
INPGA respectively from zoo dataset. The table has four columns 
namely class#, Mined rules, Predictive accuracy, and comprehen-
sibility. Tables 6, 7 and 8 shows the result generated by SGA, NPGA 
and, INPGA respectively from nursery dataset. The tables has four 
columns namely class#, Mined rules, Predictive accuracy, and 
comprehensibility. 

Figs. 5, 6, 7 and 8 depict the comparative performance of the three 
approaches. From figs. 5, 6, 7 and 8 it can be observed that in SGA 
the predictive accuracy is good but comprehensibility is very poor as 
compared to NPGA and INPGA. Since it is a multi-objective problem 
we can’t prioritize one objective over to another. The table 9 and 10 
shows the average performance of the three methods. If we look at the 
average performance of the three methods the INPGA show perform 
better than SGA and NPGA. 
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Table 3- Rules generated by SGA from zoo dataset. 
 

Class# Mined rules Predictive 
Accuracy Comprehensibility 

1 If (hair = 1) ∧ (eggs = 0) ∧(venomous = 0) 
∧(domestic = 0) Then (type =1) 

0.9545 0.8 

2 If (hair =0) ∧ (feathers = 1)∧ (venomous = 0) ∧ (legs 
= 2) ∧ (domestic = 0) Then (type = 2) 

1.0 0.7333 

3 
If (eggs = 1) ∧ (aquatic = 0) ∧ (predator =1)  

(toothed=1)∧ (fins= 0) ∧ (domestic = 0) ∧ (catsize 
=0) Then  (type=3) 

1.0 0.6 

4 If (aquatic = 1) ∧ (breathes =0) ∧ (venomous =0)∧  
(tail = 1) Then (type= 4) 

0.7 0.8 

5 
If(hair=0)∧(airbone=0)∧(aquatic =1)∧(toothed = 

1)∧(breathes = 1)∧(legs = 4)∧(catsize=0) Then ( 
type=5) 

0.9545 0.6667 

6 If (airbone=1)∧(fins =0)∧(tail =0) Then (type = 6) 0.8565 0.8 

7 If (hair=0)∧(predator=1)∧(breathes =0)∧(tail 
=0)∧(domestic=0) Then (type=7) 

0.8 0.7333 

 
Table 4- Rules generated by NPGA from zoo dataset. 

 

Class# Mined rules Predictive 
accuracy 

Comprehensibility 

1 If (eggs =0)∧(venomous = 0)∧(domestic =0) Then (type =1) 0.9090 0.8667 

2 If (feathers = 1)∧(breathes = 1)∧(domestic =0) Then (type 
=2) 

0.9333 0.8667 

3 If (eggs =1)∧(predator = 1)∧(toothed =1)∧( catsize =0) 
Then (type = 3) 

1.0 0.8 

4 If (aquatic=1)∧(breathes=0)∧(tail=1) Then (type =4) 0.8 0.8667 

5 If( airbone=0)∧(aquatic =1)∧(toothed =1)∧(breathes =1 
)∧ (catsize=0) Then ( type =5) 

1.0 0.7333 

6 If (airbone=1)∧(fins=0)∧(tail =0) Then (type =6) 0.8333 0.8 

7 If (predator=1)∧(breathes=0)∧(tail=0)∧(domestic =0) 
Then (type= 7) 

0.875 0.8 

 
Table 5- Rules generated by INPGA from zoo dataset. 

 

Class# Mined rules Predictive 
accuracy 

Comprehensibilit
y 

1 If (eggs =0)∧(venomous = 0)∧(domestic =0) Then 
(type =1) 0.9090 0.8667 

2 If (feathers = 1)∧(breathes = 1)∧(domestic =0) Then 
(type =2) 0.9333 0.8667 

3 If (eggs =1)∧(predator = 1)∧( catsize =0) Then (type 
= 3) 0.9879 0.8667 

4  If (aquatic=1)∧(breathes=0)∧(tail=1) Then (type =4) 0.8 0.8667 

5 If(airbone=0)∧(aquatic=1)∧(toothed=1) 
∧(catsize=0) Then ( type =5) 

1.0 0.8 

6 If (airbone=1)∧(fins=0)∧(tail =0) Then (type =6) 0.8333 0.8 

7 If (predator=1)∧(breathes=0)∧(domestic =0) Then 
(type= 7) 0.875 0.8667 
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Table 6- Rules generated by SGA from nursery dataset. 
 

Class# Mined rules Predictive 
accuracy Comprehensibility 

P 

If (parents=usual)∧(housing=less_conv)∧(social = 
problematic)∧(health=recommended)Then(class =P) 

 
If (parents=great_pret)∧(children=3)∧(social = 

slightly_prob)∧(health=recommended)Then(class =P) 
 

0.7780 
 
 

0.6892 

0.5 

NR 

If  (parents=usual)∧(housing=less_conv)∧ (social= 
slightly_prob) ∧(health=not_recom)Then (class =NR) 

 
If (parents=pretentious)∧(children=3)∧(housing= 

convenient ) ∧(health=not_recom ) Then  (class =NR) 
 

If (parents=great_pret)∧(children=2)∧(housing= 
critical ) ∧(health=not_recom ) Then  (class =NR) 

 

0.634 
 
 

0.7641 
 
 

0.783 

0.5 

VR 
If(parents=usual)∧(housing =less_conv) ∧ 

(finance= inconv)∧(social=slightly_prob)∧(health= 
recommended)  Then (class = VR) 

0.876 0.378 

R 
If  

(has_nurs=proper)∧(finance=convenient)∧(health 
=recomended) Then (class =R) 

0.81 0.625 

 
 

Table 7- Rules generated by NPGA from nursery dataset. 
 

Class# Mined rules Predictive 
accuracy Comprehensibility 

P 

If (parents=usual)∧(housing=less_conv)∧(social = 
problematic) Then (class =P) 

 
If (parents=great_pret)∧(social = slightly_prob) 

∧(health=recommended)Then(class =P) 
 

0.7780 
 
 

0.8114 

0.625 

NR 

If  (parents=usual)∧(housing=less_conv)∧ (social= 
slightly_prob) ∧(health=not_recom) Then (class =NR) 

 
If (parents=pretentious)∧(children=3)∧(housing= 

convenient ) ∧(health=not_recom ) Then  (class =NR) 
 

If (parents=great_pret)∧(children=2)∧(housing= critical 
) ∧(health=not_recom ) Then  (class =NR) 

 

0.634 
 
 
 

0.7641 
 
 
 

0.783 

0.5 

VR 
If(housing =less_conv) ∧ (finance= 

inconv)∧(social=slightly_prob)∧(health = 
recommended)  Then (class = VR) 

0.897 0.5 

R If  (has_nurs=proper)∧(finance=convenient)∧(health 
=recomended) Then (class =R) 

0.81 0.625 
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Table 8- Rules generated by INPGA from nursery dataset. 

 
 

 

Table 9- Average performance from zoo dataset. 
 

Methods Predictive Accuracy Comprehensibility 

SGA 0.89507 0.7333 

NPGA 0.9072 0.8191 
 

INPGA 0.9055 0.8476 

 
 

Table 10- Average performance from nursery dataset. 
 

Methods Predictive Accuracy Comprehensibility 

SGA 0.76204 0.50075 

NPGA  0.7825 0.5625 
 

INPGA 0.7665 0.625 

 
 
 
 

Class#  Mined Rules Predictive 
accuracy Comprehensibility 

P 

If (parents=usual)∧(housing=less_conv)∧(social = 
problematic) Then (class =P) 

 
If (parents=great_pret)∧(social = slightly_prob) 

∧(health=recommended) Then (class =P) 
 

0.7780 
 
 

0.8114 

0.625 

NR 

If  (parents=usual)∧(housing=less_conv)∧ (social= 
slightly_prob) ∧(health=not_recom) Then (class =NR) 

 
If (parents=pretentious)∧(children=3)∧(housing= 

convenient) ∧(health=not_recom ) Then  (class =NR) 
 

If (parents=great_pret)∧(children=2)∧(housing= critical) 
∧(health=not_recom ) Then  (class =NR) 

 

0.634 
 
 
 

0.7641 
 
 
 

0.783 

0.5 

VR If(housing =less_conv) ∧ (finance= 
inconv)∧(social=slightly_prob)  Then (class = VR) 

0.897 0.625 

R If  (has_nurs=proper)∧(finance=convenient) Then (class =R) 0.751 0.75 
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Figure 5- Predictive accuracy of mined rules by SGA, NPGA and INPGA 
from zoo dataset. 
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Figure 6- Comprehensibility of mined rules by SGA, NPGA and INPGA 
from zoo dataset. 
 
 
 

 
 

Figure 7- Predictive accuracy of mined rules by SGA, NPGA and INPGA 
from nursery dataset. 
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Figure 8- Comprehensibility of mined rules by SGA, NPGA and INPGA 
from nursery dataset. 
 
6. Conclusion 
In this paper we have discussed the use of a multi-objective genetic 
algorithms for discovering predictive and comprehensible rules 
Schaffer, 1984, 1985; Jainkow, 1993). We have discussed the basic 
concepts and principles of application of NPGA and proposed method 
called INPGA for classification rule generation and experimental 
results. Though we have experimented using limited datasets with 
limited patterns still the results show the trend of performance. The 
comprehensibility of the discovered rules could, in principle, be 
improved with a proper modification of the fitness assignment 
method. We are now concentrating on careful selection of attributes in 
a preprocessing step (Hwang and Yoon, 1981; Zeleny, 1982), in order 
to reduce the number of attributes (and the corresponding search 
space) given to the INPGA. 
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