
Iranian Int. J. Sci. 6(2), 2005, p.215-225 

 
An Extended Model of Asset Price Dynamics 

 
 
M. H. Nojumi  
Department of Mathematical Sciences, Sharif University of Technology 
P.O. Box 11365-9415, Tehran, Iran. e-mail: nojumi@sina.sharif.edu 
 

 (received: 17/5/2005 ; accepted: 5/10/2005) 
 

Abstract 
An extended model of asset price dynamics for modeling stochastic 
upward and downward jumps in asset prices is developed, and the 
modified Black-Scholes solution for value of vanilla options is 
derived. The change in volatility is identified in detail using the Itô 
integrals and Itô formulas. 
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1. Introduction 
A great variety of financial products are offered and traded in 
financial markets, of which options are one of the most frequently 
traded. A call option is a contract between two parties by which the 
buyer of the option (also called the holder of the option) has the 
option, not an obligation, to buy a specified (by quantity and quality) 
asset for a specified price at specified dates. If he chooses to do so, 
then the seller of the option (also called the writer of the option) has 
the obligation to sell the asset. A put option is a similar contract with 
the difference that the buyer of the option has the option to sell the 
asset, and if he chooses to do so, then the seller of the option has the 
obligation to buy the asset.  

In the European option, the right to buy or sell can be exercised 
only at the expiration time of the option. In American option, this 
right can be exercised at any time till expiry. In practice, most options 
are of Bermudan type in which the right to buy or sell can be exercises 
only at certain pre-specified dates.  
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Hence, an option puts the holder in an advantaged position with 
respect to the writer. This advantaged position has money value. 
Hence, to become the holder of an option, one must pay some pre-
mium to purchase the option from the writer. The problem of option 
pricing is to determine how much premium one should pay to 
purchase an option; in other words, what the current price of the 
option is, given its parameters (asset price movement, exercise dates, 
exercise prices, etc.).  

The European option is the simplest option to analyze and closed-
form formulas are available for its value. Although in practice options 
are rarely European, the results for the European option are valuable 
since they can be generalized to obtain results for values of other 
types of options (Hull, 1997; Neftci, 1996; Wilmott et al., 1995). 

The underlying asset can be anything. One can consider an “asset”, 
including cash, bonds, stocks, interest rates, foreign currency 
exchange rates, another option, various agricultural commodities like 
wheat or coffee, even things like weather condition, result of sports 
matches, etc. (Hull, 1997; Kohlmann and Tang, 2001). An important 
feature of asset prices is their stochastic movements, which in turn 
make prices of financial derivatives stochastic. Some assets display 
even fractal-like highly stochastic behavior (Peter, 1994). 
 
2. Incorporation of Jump 
Variations in an asset price are of two general types: expected and 
stochastic (Neftci, 1996). The Black-Scholes analysis assumes a log-
normal continuous stochastic growth; described by the stochastic 
differential equation  

t t t tdS S dt S dWµ σ= + ;  
with { }0tW t: ≥  a Wiener process. A fundamental limitation of this 
model is that it does not capture the stochastic jumps in asset price; a 
phenomenon which happens in the real world. A stochastic process 
suitable for modeling rare events is the Poisson process (Ross, 2003). 
With { }0tU t: ≥  a Poisson process with rate λ  which can be 
estimated by observing the market, the equation 
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t t tdS adt dW dUσ γ= + + ,  
 
with a , σ  and γ  functions of tS  and t , models stochastic jumps as 
well but has two major problems:  
• We are interested in capturing all average behavior of tS  in the 
deterministic term adt , and have the other two terms capture purely 
stochastic behavior of the asset price. The Wiener term tadW  has zero 
mean as desired. However, the Poisson term tdUγ  does not have this 
feature since tU∆  has mean 0tλ∆ ≠ .  
• The Poisson counting process is non-decreasing. In the time 
interval [ ]t t t, + ∆  the process tU  does not change with the probability 
1 ( )t o tλ− ∆ + ∆ , increases by one unit with the probability 

( )t o tλ∆ + ∆ , and increases by more than one unit with the probability 
( )o t∆ .  
Hence with γ  a nonnegative function, only the upward jumps in 

asset price are modeled. Although choosing a function γ  which takes 
on both positive and negative values, downward jumps are also 
modeled, the first problem remains unresolved. The suggestion made 
here to simultaneously solve both the above problems is to introduce 
another Poisson process { }0tD t: ≥  with the same rate λ  into the 
model in the following way: 
  

( )t t t tdS adt dW d U Dσ γ= + + − ;  
 
with a , σ , and γ  functions of tS  and t .  
In every interval [ ]t t t, + ∆ , both tU∆  and tD∆  are Poisson random 
variables with mean tλ∆ , hence t tU D∆ ∆−  has zero mean, as desired. 
The second issue is resolved as well even with γ  a nonnegative 
function since in the time interval [ ]t t t, + ∆  the process t tU D∆ ∆−   

• stays the same with probability 2 2 2 2(1 ) ( ) ( )t o tλ λ   
     

+ − ∆ + ∆ ,   

• increases by one unit with probability 2 2(1 )( ) ( )t o tλ λ  
 
 

− ∆ + ∆ ,   
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• decreases by one unit with probability 2 2(1 )( ) ( )t o tλ λ  
 
 

− ∆ + ∆ ,  

• increases by more than one unit or decreases by more than one unit 
with probability 2( )o t 

 
 

∆ . 
 
3. Itô’s Formula for Derivative Price 
Ignoring all the ( )o dt  terms, the differential of ( )tV S t, , the price of a 
financial derivative based on the underlying asset price tS  at time t , 
is  
 

2
2

2

1
2t t

t t

V V VdV dt dS dS
t S S

∂ ∂ ∂
= + + .

∂ ∂ ∂
 

 
In deterministic calculus, one would retain only the first two terms 
since all other terms are ( )o dt . However, in stochastic calculus the 
third term cannot be ignored since it contains an ( )O dt  term. To 
identify this term, we consider   
 

2 2 2 2 2 2 2

2 2 2
t t t

t t t t

dS a dt dW dJ
a dtdW a dtdJ dW dJ

σ γ
σ γ σγ

= + +
+ + + ;

 

 
with t t tJ U D:= − . A fundamental property of the Wiener process is 

2
tdW dt=  (Neftci, 1996). To investigate the nature of tdJ  using the 

notion of the Itô integral, with an arbitrarily selected 0T > , we 
partition the time interval [0 ]T,  into n  subintervals of equal length 
h T n= /  and, with 0 1jt jh j … n:= ; = , , ,  and 

1
0 1 1

j jj t tJ J J j … n
+

∆ := − , = , , , − , we consider the quantity  
2

2

0 1
n j

j n

E J Z 
 
 

≤ ≤ −

  
 Ω := ∆ − ;    

∑  

with E  the expectation operator, and Z  the constant such that  
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0
lim 0nn→

Ω = .  

Now 
 

( )

( )

4 2

0 1

2 22

0 1 0 1

4 2

0 1

2 22

0 1 0 1

2 2

2 2

n j
j n

j jk
j k n j n

j
j n

j jk
j k n j n

E J Z

J Z JJ

E J Z

E J Z E JJ


  
  

 
≤ ≤ −


   
   

    
≤ < ≤ − ≤ ≤ − 

       ≤ ≤ −

                     ≤ < ≤ − ≤ ≤ −

Ω =  ∆ +

      + ∆ − ∆∆

= ∆ +

     + ∆ − ∆ .∆

∑

∑ ∑

∑

∑ ∑
 

 
By independent increments property of the Poisson process, for j k≠  
the random variables  jJ∆   and  kJ∆   are independent, so  

 ( ) ( )2 22 2
j jk kE J E J EJ J

                            
∆ = ∆ .∆ ∆  

Moreover, by stationary increments property of the Poisson process, 
for every 0 1 1j … n= , , , − , the random variable  
 

1j jj t tJ J J
+

∆ := −  
has the same probability distribution as the random variable  
 

1
( )

j t jt hJ J Poisson hλ
+ −

= .∼  

Hence 
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4 2

0 1

22 2

0 1 0 1

24 2 2 2

2 2

( 1) 2

n h
j n

h h
j k n j n

h h h

E J Z

E J Z E J

nE J n n E J nZE J Z

 
 
 

≤ ≤ −

   
   
   

≤ < ≤ − ≤ ≤ −

     
     
     

Ω = +

      + −

= + − − + .

∑

∑ ∑

 
 
Lemma. The Moment generating function of a Poisson distribution 
with rate λ  is  

( )( ) exp[ 1 ]MGF z
X z eλ= − .  

Proof.  

0 0
( )MGF

kzk
zX zk

X
k k

e
z E e e e e

k k
λ λ

λλ  ∞ ∞  − −   
 
 

= =

= = = .
! !∑ ∑  

 
Having the moment generating function of hJ , we can determine the 

required quantities 2
hE J 

 
 

 and 4
hE J 

 
 

:  
 

( )

( )

( )

( )

2

2

3
2 2

3

4
2 2 3 3

4

MGF ( ) exp[ 1 ]

MGF ( ) 1 exp[ 1 ]

MGF ( ) 1 3 exp[ 1 ]

MGF ( ) 1 7 6 exp[ 1 ]

z zX

z z zX

z z z zX

z z z z zX

d z e e
dz

d z e e e
dz

d z e e e e
dz

d z e e e e e
dz

λ λ

λ λ λ

λ λ λ λ

λ λ λ λ λ

 
 
 

 
 
 

 
 
 

= −

= + −

= + + −

= + + + −
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Since hU  and hD  are both Poisson processes with rate hλ ,  we have 
 

( ) ( )
2

2 2
2

3
3 3 2 2

3

4
4 4

4

2 2 3 3

MGF (0)

MGF (0) (1 )

MGF (0) 1 3
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h

h

h

h
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U
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d
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dz
d

E U E D h h
dz

d
E U E D h h h

dz
d

E U E D
dz

h h h h

λ

λ λ

λ λ λ

λ λ λ λ

   
   
   

     
     
     

   
       

 
 
 

= = =

= = = +

= = = + +

= =

= + + +
 

 
So   

( ) ( ) ( ) ( ) 0h h h h hE J E U D E U E D= − = − = ;  
 

( )22

2 2

2

2

2 (1 ) ( )

2

h h h

h h h h

E J E U D

E U E U E D E D

h h h

h

λ λ λ

λ

  
  

    

      
               

 
 
  

= −
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 =  + −

 =  
 

( )44
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With these results, and by h Tλ = , we obtain   
 

2 2 2

2 2 2 2

2 (1 6 ) 4 ( 1) 4
4 4 2 8

n n h h n n h n hZ Z
Z TZ T T Th

λ λ λ λ
λ λ λ λ

Ω = + + − − +

 = − + + +  
 
Therefore, noting that letting n → ∞  is equivalent to letting 0h → ,  
 

2 2 2lim 4 4 2nn
Z TZ T Tλ λ λ

→∞
Ω = − + +  

 
The value of Z  making this limit zero is  
 

2 2Z T i Tλ λ= ±  
 
We have thus shown that   

( )2

0

0

2 2

2
2

T

t t

T

d T i TU D

i dt
t

λ λ

λλ
 
 
 
 
 
 

= ±−

 = ±  .

∫

∫
 

 
For large t  the imaginary term is negligible. We have thus proved   
 
Proposition. For large t  compared to λ  such that 
 

2

12
2 8

or equivalently t
t

λ λ
λ

 

 
 
the variable t tU D−  satisfies the following equation with good 
approximation  
 

( )2 2h hd dtU D λ= .−  
 
Now we can identify the significant ( )O dt  terms in 2

tdS :   
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( )

2 2 2 2 2 2 2

2 2

2 2 2

2 2 2

t t t

t t t t

dS a dt dW dJ
a dtdW a dtdJ dW dJ

dt

σ γ
σ γ σγ

σ λγ λ ρσγ

= + +
     + + +

= + +  ;
 

  
with 1 1ρ− ≤ ≤  the instantaneous coefficient of correlation between 

tW  and t tU D− , which here we define via the equation  
 

( ) 2t t tdW d U D dtλ ρ− = .  
 
It is reasonable to assume that under normal operation of the market, 
economic factors that contribute to upward stochastic jumps in price 
of a particular asset are independent from those responsible for down-
ward stochastic jumps in the price of the same asset. Also, an 
economic factor is not likely to cause both an upward jump and a 
downward jump in the asset price. Hence it is reasonable to assume 
statistical independence of tU  and tD   

However, one may expect correlation between tW  and t tU D− . A 
continuous stochastic movement of the asset price may trigger factors 
that cause stochastic jumps in either direction. So both positive and 
negative values of the correlation coefficient ρ  are likely. The Itô’s 
formula for the financial derivative on the underlying asset price tS  
then takes the form   

( )

( )

2
2

2

2
2 2

2

1
2

( )

1 2 2 2
2

t t
t t

t t t
t

t

V V VdV dt dS dS
t S S

V Vdt adt dW d U D
t S

V dt
S

σ γ

σ λγ λ ρσγ

∂ ∂ ∂
= + +

∂ ∂ ∂
∂ ∂ = + + + −
∂ ∂

∂
      + + + ;

∂  
  
or   



222    Nojumi M.H.                                                                      IIJS, 6 (Math.), 2005 
   

( )
2

2 2
2

1 2 2 2
2

( )

t t

t t t
t t

V V VdV a dt
t S S

V VdW d U D
S S

σ λγ λ ρσγ

σ γ

 ∂ ∂ ∂
= + + + + ∂ ∂ ∂ 

∂ ∂
      + + − .

∂ ∂  
  
 
4. The Updated Black-Scholes Equation 
The Black-Scholes delta-hedged portfolio  
 

t
t

VV S
S

∂
Π := −

∂
 

 

is still risk-free since, keeping 
t

V
S

∂
∂

 fixed during the infinitesimal time 

interval [ ]t t dt, + ,  

( )

( )

2
2 2

2

1 2 2 2
2

( )

( )

t
t

t t

t t t
t t

t t t
t

Vd dV dS
S

V V Va dt
t S S

V VdW d U D
S S

V adt dW d U D
S

σ λγ λ ρσγ

σ γ

σ γ

∂
Π = −

∂

 ∂ ∂ ∂
 = + + + +  ∂ ∂ ∂ 

∂ ∂
       + + −

∂ ∂

∂
         − + + −

∂  
or  

( )
2

2 2
2

1 2 2 2
2 t

V Vd dt
t S

σ λγ λ ρσγ
 ∂ ∂

Π = + + + . ∂ ∂ 
 

 
In the absence of arbitrage opportunities, which is the usual case in the 
financial markets, the return from this portfolio should be equal to 
return from the risk-free investment of amount Π ; that is, tr dtΠ , with 

tr  the instantaneous risk-free interest rate at time t . We thus arrive at 
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the partial differential equation satisfied for the financial derivative 
price ( )tV S t, : 
 

( )
2

2 2
2

1 ( ) 2 ( ) 2 2 ( ) ( ) 0
2 t t t t t t t

t t

V V VS t S t S t S t r S rV
t S S

σ λγ λρσ γ∂ ∂ ∂
+ , + , + , , + − =

∂ ∂ ∂  
 
In the special case of the asset price having constant log-normal 
expected growth rate, log-normal continuous stochastic change, and 
log-Poisson jump stochastic change; that is,  
 

( ) , ( ) ( )t t t t t ta S t S S t S S t Sµ σ σ γ γ, =           , = ,          , =  
  
with µ , σ , and γ  constants, the asset price dynamics follows the 
stochastic differential equation  
 

( )t t t t t t tdS S dt S dW S d U Dµ σ γ= + + −  
 
With risk-free interest rate also assumed constant r , the partial 
differential equation satisfied by the financial derivative price ( )tV S t,  
is  

( )
2

2 2 2
2

1 2 2 2 0
2 t t

t t

V V VS rS rV
t S S

σ λγ λ ρσγ∂ ∂ ∂
+ + + + − = .

∂ ∂ ∂
 

 
This is the Black-Scholes equation with σ  replaced by the effective 
volatility σ̂  given by  

2 22 2 2 2ˆ σ λγ λ ρσγσ := + + ;  
Three special cases are  
• ˆ 2σ σ λγ= +   in case of full positive correlation ( 1ρ = − )  
• ˆ 2σ σ λγ= −   in case of full negative correlation ( 1ρ = − )  

• 2 2ˆ 2σ σ λγ= +   in case of no correlation ( 0ρ = ).  
A stock that has price tS  at time t  and pays a continuous dividend 
yield q  behaves like a non-dividend paying stock which has price 
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( )q T t
te S− −  at time t . Hence the price of European call and put options 

on this stock are given by the Black-Scholes formulas (Hull, 1997; 
Neftci, 1996) with σ  replaced by σ̂ ; that is,  
 

( ) ( )
1 2( ) ( ) ( )q T t r T t

t tC S t e S N d e KN d− − − −, = −  
and  
 

( )( )
2 1( ) ( ) ( )tq Tr T t

t tP S t e KN d e S N d−− −, = − − −  
with   
 

2
1

1 1log ( )ˆ
2ˆ

tSd r q T t
KT t

σ
σ

    := + − + − ,   −    
 

 
2

2

1

1 1log ( )ˆ
2ˆ

ˆ

tSd r q T t
KT t

d T t

σ
σ

σ

    := + − − −   −    

  = − −  
 
Here T  and K  are the expiration time and exercise price of the 
option, respectively, and N  is the cumulative distribution function of 
the standard normal distribution:  
 

2 21( )
2

d sN d e ds
π

− /

−∞
= .∫  

 
The price of a European call or put option on a stock index, like S&P 
500, can be obtained by setting as q  the continuous return rate from 
that stock index. Similarly, the price of a European call or put option 
on a foreign currency can be obtained by replacing every q  in the 
above formulas by the risk-free interest rate in the corresponding 
foreign country. 
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