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Abstract 
In this paper we consider the Time Optimal Control Problem with 
Bounded state (TOCPB). By means of a process of embedding and 
using measure theory, this problem is replaced by another, in which 
we seek to minimize a linear form over a subset of a measure space 
defined by linear equalities. The theory allows us to convert the new 
problem to an infinite-dimensional linear programming problem. 
Afterwards, the infinite-dimensional linear programming problem is 
approximated by a finite dimensional one. Then by the solution of the 
final linear programming problem one can find an approximate value 
of the trajectory function )(⋅x , control function )(⋅u  and optimal time 
T as well. 

AMS classification(49A). 
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1. Introduction 
The control problems with bounded state (CPB) and optimal control 
problems with bounded state (OCPB) have received considerable 
attention from theoretical and numerical points of view (Dixon & 
Biggs, 1972; Maurer & Gillessen, 1975; Dixon & Biggs, 1981; 
Vlassenbroeck, 1988; Fraser-Andrews, 1996). We used measure 
theory to solve OCPB's (Heydari, et al.,  2001). In the last decade 
some authors used this method to solve optimal control problems in 
lumped and distributed systems (Heydari, et al.,  2001; Rubio, 1986; 
Kamyad et al., 1992; Farahi, et al., 1996a; Farahi, et al., 1996b; 
Heydari, et al.,  1999; Alavi et al., 1997;Effati & Kamyad, 1998). 
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In this article we consider the following TOCPB: 
 

TMinimize              )1(  
: tosubject       ( ) ( ) UAuxuxgx ×∈= ,,,�  

 
( )( ) Jttx ∈≤ ,0η       )2(  

( ) ( ) .10 ,0 xTxxx ==            
Where 0x   and 1x  are given and ],0[ TJ = , A is a bounded, closed, 
and piecewise connected set in nR  such that JtAtx ∈∀∈ ,)(  and U  
is a bounded and closed set in nR  where JtUtu ∈∀∈ ,)( . The scalar 
function η  is assumed to be )1( +p –times continuously differentiable 
in x , and the function g  is assumed to be )1( +p – times continuously 
differentiable in x and u  where p  is definite. 
 We may rewrite the objective function )1(  as follows: 

 Minimize ∫= J
dtI .:(.)            )3(  

The region specified by 
( ) 0)( =txη  ,            )4(  

is called the state boundary. Differentiating )4(  and using )2(  
gives, )(iη , the i th times derivative of η . We say the problem is of 
order of p  if : 

 ( ) ( )( ) 0=txiη , 1,,1,0 −= pi … ,    ( ) ( ) ( )( ) .0, =tutxpη     )5(   
Since also in this problem we have 0≤η , thus 

 ( )( ) ( )( ) ( )( ) .0=+= txtxtxs ηηη         )6(  
Now define the pair )](),([ ⋅⋅ ux  to be an admissible pair, if: 

1) The function )(⋅x  is continuous, and JtAtx ∈∀∈ ,)( .  
2) The function )(⋅u is Lebesgue measurable, and JtUtu ∈∀∈ ,)( .  
3) The pair )](),([ ⋅⋅ ux  satisfies differential equation )2( and 
relations )5(  and )6(  a.e. on ),0( TJ =D  in the sense of Cara’theodory. 
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We denote the set of admissible pairs by W. The problem has no 
solution unless W≠0. By this assumption now the problem is as 
follows: 
Find an optimal admissible Ww∈  which minimizes the functional: 

( ) ∫=⋅ J
dtI . 

2. Metamorphosis 
Assume that B is an open ball in nR  containing A, denote the space of 
all differentiable function on B by )(BC′ , and define: 

 gxg ).(φφ ∇=              )7(  
where (.)φ∇  and (.,.)g  are n-vectors and the right-hand side of )7(  
presents an inner product, gφ  is in the space )(ΩC  of real-valued 
continuous functions defined on the compact set UAJ ××=Ω . Then 
by the definitions of g  and φ  and using the chain rule we have: 

dttxdttutx
JJ

g ))(())(),(( ∫∫ = φφ �  

 ).(,))0(())(( BCxTx ′∈∀≡−= φδφφφ       )8(  
Since A may have an empty interior in nR  , we need to introduce 

the set B and space )(BC′ . Let )( DJD  be the space of infinitely 
differentiable real valued functions with compact support in DJ , and 
each x  and g  have n  components such as jx  and njg j ,,2,1, …= .  

For each )( DJD∈ψ  define: 
 .,,2,1),()())(),(,( njtgtxtutxt jj

j …� =+= ψψψ     )9(  

If w is an admissible pair, then for any )( DJD∈ψ  we have: 

∫∫∫ +=
J jJ jJ

j dttgdttxdttutxt )()())(),(,( ψψψ �  

.)())}(),(,({|)()( 0 ∫ −−=
J jj

T
j dtttutxtgxttx ψψ �  

Since ψ  has compact support on DJ , so 
0)()0( == Tψψ , 

and since gx =� , so  
 .0))(),(,( =∫ J

j dttutxtψ          )10(   
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Now assuming that F is an open ball in R containing J, denote the 
space of all differentiable functions on F by )(1 FC  . Set 

 Ω∈= ),,(),(),,( uxttuxtg ββ � ,       )11(  
and 

 ∫ ∈=
J

FCdtuxt )(,),,( 1βαβ β ,       )12(  

where βa  is the Lebesgue integral of ),,( uxtβ  on J. Also by (5), 

 ∫ =
J

i dttx 0))(()(η , 1,,1,0 −= pi …      )13(  

and finally by (6), 
 .0))((∫ =

J
dttxsη             )14(  

Now consider the mapping: 
 ∫→Ω∈Λ

Jw dttutxtFCF ))(),(,()((.,.,.):       )15(  

that is a linear positive functional. The left-hand sides of the equalities 
(8)-(10)-(12)-(13)-(14) are all integrals, thus by using these equalities 
and (15), the problem (2)-(3) can be modified as: 

Minimize  )1(wΛ              )16(  
subject to: 

)(,)( BCg
w

′∈=Λ φδφφ  
)(;,,2,1,0)( D… JDnjj

w ∈==Λ ψψ  
).(,)( 1 FCw ∈=Λ βαβ β             )17(  

,1,,1,0,0)( )( −==Λ pii
w …η  

.0)( =Λ ηsw  
We mention that wΛ  is appositive Radon measure on the set )(ΩC . 

Denote the space of all positive Radon measure on Ω  by )(Ω+R . A 
Radon measure on Ω  can be identified with a regular Borel measure 
on this set (see Royden, 1995, Riesz representation Theorem). Thus, 
for a given positive functional wΛ on )(ΩC , there is a positive Borel 
measure on Ω  such that: 

).(),()( Ω∈==Λ ∫Ω CFFFdFw µµ
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Now, the problem (16)-(17) can be replaced by the following new 
problem. We seek a measure in )(Ω+M  ( the space of all positive 
Borel measures on Ω )which minimizes functional 

RM ∈→Ω∈ + )1()( µµ         )19(  
  and satisfies the following constraints: 

)(,)( BCg ′∈= φφδφµ  
)(;,,2,1,0)( D… JDnjj ∈== ψψµ  

).(,)( 1 FCa ∈= ββµ β                                  )19(  

,1,,1,0,0)( )( −== pii …ηµ  
.0)( =ηµ s  

Now consider the extension of our problem: we shall consider the 
minimization of (18) over the set Q of all positive Borel measures on 
Ω  satisfying (19). The main advantages of considering this measure 
theoretic from of the problem is: "The existence of an optimal measure 
in the set Q that satisfies (18)-(19) can be studied in a straightforward 
manner without having to impose conditions such as convexity which 
may be artificial." 

By the proposition .ΙΙ 1, Theorem .ΙΙ 1 and proposition .ΙΙ 3 of 
(Rubio, 1986), we can prove the existence of the optimal measure in 
the new set Q. 
 
3. First approximation 
The problem (18)-(19) is an infinite dimensional linear programming 
(LP) problem, because all of the functionals in (18)-(19) are linear in 
the variable µ , and furthermore, the measure µ  is required to be 
positive. We note that this is true even if the original problem is 
nonlinear, linearity in the present sense was gained by the 
consideration of admissible pairs as positive measures on Ω . Of 
course, it is an infinite dimensional LP problem, because )(Ω+M  is 
infinite dimensional space. It is possible to approximate the solution 
of this problem by the solution of a finite- dimensional LP of 
sufficiently large dimension. Also, from the solution of this new finite 
dimensional LP we induce an approximated admissible pair in a 
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suitable manner. We shall first develop an intermediate problem, still 
infinite-dimensional by considering the minimization (18); not over 
the set Q but over a subset of )(Ω+M  with only a finite numbers of 
the constraints in (19) being satisfied. This will be achieved by 
choosing countable sets of functions whose linear combinations are 
dense in the set Q, and then selecting a finite number of them. 

Consider the first set of equalities in (19). Let the set },2,1,{ …=iiφ  
be such that the linear combinations of the functions )(BCi ′∈φ  are 
uniformly dense in )(BC′ . For instance, these functions can be taken 
to be monomials in the components of the n-vectors x. 

If in the second stage, rψ 's are chosen as below: 
 ],/2sin[ trt δπ  ],/2cos[1 trt δπ−  …,2,1=r     )20(  

where Tt =δ , as in the next section, then the problem is converted to 
a non-linear programming (NLP). Since the solution of the NLP 
problem is difficult by our disposal, we would define rψ 's such that 
the problem be an LP problem. By using controllability we consider 

at  such (as we assumed) that   0 < Tta <  and define: 



 <

=
otherwise

tttrt
t a

r 0
]/2sin[

)(
δπ

ψ   

or 
)21(  



 <−

=
otherwise

tttrt
t a

r 0
]/2cos[1

)(
δπ

ψ  

where att =δ  and …,2,1=r  . 
 
4. Secound approximation 
The first approximation will be completed by using above subjects 
and the following proposition. 

We mention that )(tβ 's and )(tψ 's are special cases of function φ  
that depend only t, then:  
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Proposition 1: Consider the linear program consisting of the 
minimizing function )1(µµ →  over the set MQ of measures in 

)(Ω+M  satisfying: 

( ) Mbg
b ,,2,1, …== δφφµ  

( )( )
( ) .

,1...,,1,,
D

DD
=

−==
ηµ

ηµ
s

pii

 

then )1(inf µλ QMM ≡  tends to )1(inf µλ Q≡  as ∞→M  . 
Proof: 
(a) Exists ξ  such that Mλ  tends to ξ  as ∞→M  : 

We know that:  

,
,

21

21

λλλλ ""
""

≤≤≤≤
⊇⊇⊇⊇⊇

M

M QQQQ
 

∞
=1)( MMλ  is non decresing and bounded sequence then converges to a 

number ξ  such that λξ ≤ . 
(b) λξ = : 
set MM QR ∞

=≡ 1∩  then QR ⊇  and )1(inf µξ R= . We show that 
QR ⊆ : 

if R∈µ , then:  
:)(,)( BCg ′∈∀= φδφφµ  

We have },2,1,{,)( …=∈∀= bspan b
g φφδφφµ , since there is the 

sequence )()( BCk ′∈φ such that 21, SS  and 3S  tend to zero as ∞→k  
where: 

),(),(sup1 xtxtS
tkt φφ −=  

),(),(sup2 xtxtS
xkx φφ −=  

),(),(sup3 xtxtS kφφ −=  
then 
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,

),(),(sup),(),(sup),(),(sup

)()]},(),([),,(),(),({

)()()(

32211

21

SSS

xtxtxtxtxtxt

dxtxtuxtgxtxt

kkxkt

kktkx

k
g
k

gg

xt

tx

++

=−+−+−

≤−−−+−

=+−−=−

∫

αα

φφφφαφφα

δφδφµφφφφ

δφφµδφφµδφφµ

 
where ∫Ω=××=Ω µα duxtgUAJ ),,(, 1  and ∫Ω= µα d2 . 

Since the right-hand side of the above inequality tends to zero as 
∞→k , while left-hand side is independent of k, therefore: 

)(,)( BCg ′∈∀= φδφφµ  
Thus if R∈µ , then it is also in Q, from which λξ ≤ , and the 

contention of the proposition follows. □ 
 
Proposition 2: The measure ∗µ  in the set MQ at which the function 

)1(µµ →  attains its minimum has the form: 

( )∑
=

∗∗∗ =
M

k
kk y

1
δαµ             )22(  

Ω∈∗
ky  and ,,,2,1,0 Mkk …=≥∗α  and (.)δ  is unitary atomic measure 

with the support being the singleton set { }∗ky , characterized by: 
.),())(( Ω∈= yyFFyδ . 

Proof: similar to Proposition ІІІ.3 in (Heydari, et al., 2001). 
This structural result points the way towards a nonlinear problem in 
which the unknowns are the coefficients ∗

kα  and supports 
{ } Mkyk ,,2,1, …=∗ . 

To change this problem to an LP, we use another approximation. If 
Nω  is a countable dense subset of Ω , we can approximate ∗µ  by a 

measure )(Ω∈ +Mν  such that:  

( )∑
=

∗=
M

k
kk y

1
δαν  

Where { }N
N

k yyyy ,,, 21 …=∈ω  [Proposition ІІІ.3 of (Rubio, 1986)]. 
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This result suggests the following LP problem: 
Given 0>ε  and ,,,2,1, Nkwy N

k …=∈  

∑
=

N

k
kMinimize

1
α            )23(  

Subject to: 

( )

( )

( )

( ) ( )

( ) ,

1,,2,1,

,,,2,1,

/,,2,1
,,2,1

,

,,,2,1,

1

1

1

21

1
1

εηα

εηα

εαββα

εψα

εδφφα

≤

−=≤

=≤−

=
=

≤

=≤−

∑

∑

∑

∑

∑

=

=

=

=

=

N

k
kk

N

k
k

i
k

s

N

k
ksk

N

k
k

j
rk

N

k
bk

g
bk

ys

piy

Lsy

nMr
nj

y

Mby

"

"

…
…

"

    )24(  

.,,2,1,0 Nkk "=≥α  
Assume ε)(MP  in NR  shows the set ),,,( 21 Nααα …  where 

,0≥kα  Nk ,,2,1 "=  satisfies (24), then by Theorem ІІІ.1 of 
(Rubio, 1986), for every 0>ε  the problem of minimizing the 
functional (23) on the set ε)(MP  has a solution for )(εNN =  
sufficiently large, and the solution satisfies  

ελαερλ +≤≤+ ∑
=

M

N

j
jM

1
)(  

where 0)( →ερ  as 0→ε . 
Let )(1 FCr ∈θ , 

…,1,0,),,( == rtuxt r
rθ           )25(  

then the set of rθ 's is dense in )(1 FC . Assume that there are L of 

them in the set { } 1

1
M
i

g
i =φ . It is necessary to choose L number of functions 

of the time only, to replace the functions …,1,0, =rrθ  which were not 
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found suitable, so we have chosen some suitable functions, to be 
denoted by Lsfs ,,2,1, …=  , as follows: 

( )


 ∈

=
otherwise

Jt
tf s

s 0
1

 

where 1,,2,1),1/(),,)1(( −=−=−= LsLtdsddsJ as … , and 
),( TtJ aL = . Since every continuous function can be written as a 

linear combination of monomials of the type …,,,1 2xx  , we assume, 
,,,, 2211 nn xxx === φφφ …  

2
2

2
22

2
11 ,,, nnnn xxx === ++ φφφ …  

until 1M  functions are chosen. Also assume for ,,,2,1
12Mr …=  

( ) [ ]


 <

=
otherwise

tttrt
t a

r 0
/2sin απ

ψ  

and for 
111 222 2,,2,1 MMMr …++= ,  

( ) [ ]


 <−

=
otherwise

tttrt
t aa

r 0
/2cos1 π

ψ  

then we have 
122 2nMM = . 

Now, if in the problem (23)-(24), uxt NNNN ××=→ ,0ε , where 

tN  and xN  and uN  are the umbers of partitions on the t, x and u axes 
respectively, and Njuxty N

jjjj ,,2,1,),,( …=∈= ω , then we have the 
following LP problem: 

∑
=

N

k
kMinimize

1
α           )26(  

Subject to:  
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,0)(

1,,2,1,0)(

,,,2,1,)(

/,,2,1
,,2,1

,0)(

,,,2,1,)(

1

1

)(

1

21

1
1

∑

∑

∑

∑

∑

=

=

=

=

=

=

−==

==

=
=

=

==

N

k
kk

N

k
k

i
k

s

N

k
ksk

N

k
k

j
rk

b

N

k
k

g
bk

ys

piy

Lsayf

nMr
nj

y

Mby

ηα

ηα

α

ψα

δφφα

"

"

…
…

"

      )27(  

Nkk ,,2,1,0 "=≥α   , 
where sa  is the integral of sf  on J. By the solution of this finite 
dimensional LP problem we obtain the nearly optimal ∗α 's. 

The procedure to construct a piecewise construct control function 
approximating the action of the optimal measure is based on the 
analysis in Rubio (Rubio, 1986). 
 
5. Numerical examples 
We have estimated the solution of some time optimal control 
problems with bounded state by using the techniques developed here. 
Before presenting the result, it necessary to make several comments: 
 
(i) The intervals A and U are chosen appropriate such that all the 
problems are controllable. 
 
(ii) The Time interval J is chosen as [ ]TJ ,0=  in all cases. 
 
(iii) The sets of the form { }Nkyk

N ,,2,1, …==ω  were constructed by 
dividing the appropriate intervals into a number of subintervals, 
defining in this way a grid of points. We found it is necessary to 
change these grids according to each problem. 
 
(iv) The number of constraints 1M , 2M  and L, are chosen sufficiently 
large. 
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(v) The solution of the linear program (26)–(27) were estimated by 
means of a home – made revised simplex method. 
 
Example 1. Minimize J = T  
 subject to 

0)()0(,
,5.0)(,0)0(,

222

1121

====
===

Txxux
Txxxx

�
�

 

We divided the sets [ ] [ ] [ ]5.0,1,5.0,1,,0 21 −=−== AATJ  and 
]1,1[−=U  

respectively into 10=tp , and 521 === uppp  subintervals. Then 
the set Ω  is divided into N = 1250 cells, and ),,( kkkk uxty =  belongs 
to the kth cell, we have chosen 10,8,4 21 === LMM , and 1=at . 
In this example after 59 iterations the Optimal Time converges to the 
value 4286.1=∗T , while the exact optimal time is 2 (see Pinch, 
1995). The graphs of the piecewise constant control function and 
trajectory are as follows (Fig. 1): 
 
 
 
 
 
 
 
  
 

Figure 1 - Optimal Control and State 
 
Example 2. (see Balachanran, 1999) Minimize J=T subject to the 
nonlinear system of equation: 

( ) 0)(,sec2
1

,0)(,

22
2

2

121

==

==

Txxux
Txxx

�
�
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We divided the sets [ ] [ ] 



−=−== 0,2,0,5.0,,0 21

πAATJ , 

]1,1[−=U  respectively into 5=tp ,and 521 === uppp  
subintervals. Then the set Ω  is divided into 154 +=N  cells, and 

),,( kkkk uxty =  belongs to the kth cell, and 8,2 21 == MM , and 
5=L , and we consider .2.0=at  

In this example after 22 iterations the Optimal Time converges to 
the value 36.0=∗T .The graphs of the piecewise constant control 
function and trajectory are as follows (Fig. 2). 

 
Figure 2 - Optimal Control State 
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