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Abstract
In this paper we consider the Time Optimal Control Problem with
Bounded state (TOCPB). By means of a process of embedding and
using measure theory, this problem is replaced by another, in which
we seek to minimize a linear form over a subset of a measure space
defined by linear equalities. The theory allows us to convert the new
problem to an infinite-dimensional linear programming problem.
Afterwards, the infinite-dimensional linear programming problem is
approximated by a finite dimensional one. Then by the solution of the
final linear programming problem one can find an approximate value
of the trajectory function x(-), control function u(-) and optimal time

T as well.
AMS classification(49A).
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1. Introduction

The control problems with bounded state (CPB) and optimal control
problems with bounded state (OCPB) have received considerable
attention from theoretical and numerical points of view (Dixon &
Biggs, 1972; Maurer & Gillessen, 1975; Dixon & Biggs, 1981;
Vlassenbroeck, 1988; Fraser-Andrews, 1996). We used measure
theory to solve OCPB's (Heydari, et al., 2001). In the last decade
some authors used this method to solve optimal control problems in
lumped and distributed systems (Heydari, et al, 2001; Rubio, 1986;
Kamyad et al, 1992; Farahi, et al., 1996a; Farahi, et al, 1996b;
Heydari, et al., 1999; Alavi et al., 1997;Effati & Kamyad, 1998).
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In this article we consider the following TOCPB:

Minimize T )
subjectto:  x=g(x,u), (x,u)e AxU
n(x(¢))<0, teJ (2)

x(O) = X0 X(T) =X
Wherex, and x, are given and J =[0,7], A is a bounded, closed,
and piecewise connected set in R" such that x(¢) e A,VteJ and U
is a bounded and closed set in R" where u(¢) e U,Vt € J . The scalar
function 7 1s assumed to be (p+1)—times continuously differentiable
in x, and the function g is assumed to be (p +1)— times continuously

differentiable in xand u where p is definite.
We may rewrite the objective function (1) as follows:

Minimize (.) = | . 3)

The region specified by
n(x(1)=0, @)
is called the state boundary. Differentiating (4) and using (2)
gives, 7, the ith times derivative of 77. We say the problem is of
order of p if:
n(x(t)=0,i=0,1, ..., p=1, 7 (x(r).ut))=o0. (5)
Since also in this problem we have 7<0, thus
sn(x(e)) = n(x(0)+ [ (x(e)} = 0. (6)
Now define the pair [x(-),u(-)] to be an admissible pair, if:
1) The function x(-) is continuous, and x(¢) € 4,Vte J .
2) The function u(-)is Lebesgue measurable, and u(t) e U,Vt e J .
3) The pair [x(-),u(-)] satisfies differential equation(2)and
relations (5) and (6) a.e.on J° =(0,7") in the sense of Cara’theodory.
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We denote the set of admissible pairs by W. The problem has no
solution unless W#0. By this assumption now the problem is as
follows:

Find an optimal admissible w € W which minimizes the functional:

1()=], dr.
2. Metamorphosis
Assume that B is an open ball in R" containing A, denote the space of
all differentiable function on B by C’ (B), and define:
9% =Vp(x).g (7)
where V@(.) and g(.,.) are n-vectors and the right-hand side of (7)

presents an inner product, ¢° is in the space C(Q) of real-valued

continuous functions defined on the compact set Q=Jx AxU . Then
by the definitions of g and ¢ and using the chain rule we have:

[ ¢ cu)de = [ gx@)dr
= §(x(T) ~ §(x(0)) = 54, ¥ p < C (B). ®)

Since 4 may have an empty interior in R" , we need to introduce
the set B and space C (B). Let D(J°) be the space of infinitely

differentiable real valued functions with compact support in J°, and
each x and g have n components such as x; and g;,;j=1,2,...,n.

For each w € D(J°) define:
vt xO.u) =2y O+ g0, j=12n )
If wis an admissible pair, then for any € D(J") we have:
[,y @ x@unde =[x @i+ | gy

=x;(Oy (O] —L X, =g, @, x(1),u(?) jy (t)dt.
Since y has compact support on J°, so

y(0)=y(T)=0,
and since x =g, so

j W (@ x(@),u())di =0. (10)
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Now assuming that F is an open ball in R containing J, denote the
space of all differentiable functions on F by C'(F) . Set

e (t,x,u) = B(0), (1, x,u) €2, (D
and

| B xuydt=a,pec'(F), (12)
where a, is the Lebesgue integral of S(¢,x,u) onJ. Also by (5),

Ijn(i)(x(t))dt:O, i=0],..,p-1 (13)
and finally by (6),

j sm(x(@)dt = 0. (14)
Now consider the mapping:

A, F(.,.,)eC(Q) > LF(t,x(t),u(t))dt 15)

that is a linear positive functional. The left-hand sides of the equalities
(8)-(10)-(12)-(13)-(14) are all integrals, thus by using these equalities
and (15), the problem (2)-(3) can be modified as:
Minimize A (1) (16)
subject to:

A (#*) =49 C (B)
A,(w')=0,j=12,....n;w € D(J")

Aw(ﬁ):aﬁ,ﬂeCl(F). 17)
A,(@")=0,i=0,1,...,p-1,
A, (sn)=0.

We mention that A is appositive Radon measure on the set C(Q2).

Denote the space of all positive Radon measure on Q by R"(Q). A

Radon measure on € can be identified with a regular Borel measure
on this set (see Royden, 1995, Riesz representation Theorem). Thus,
for a given positive functional A on C(€), there is a positive Borel

measure on Q such that:
A (F)= jQ Fdu = u(F), F e C(Q).
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Now, the problem (16)-(17) can be replaced by the following new
problem. We seek a measure in M " (Q) ( the space of all positive

Borel measures on QQ )which minimizes functional

ueM (Q)— u(l)eR

19)
and satisfies the following constraints:
u(g*)=0¢, ¢ C(B)
wy’)=0,j=12,....m;y e D(J)
H(PB)=ay, B eC(F). 19)
wu(n)=0,i=0,1,....p—1,
u(sm)=0.

Now consider the extension of our problem: we shall consider the
minimization of (18) over the set O of all positive Borel measures on
Q satisfying (19). The main advantages of considering this measure
theoretic from of the problem is: "The existence of an optimal measure
in the set Q that satisfies (18)-(19) can be studied in a straightforward
manner without having to impose conditions such as convexity which
may be artificial."

By the proposition II.1, Theorem II.1 and proposition II.3 of
(Rubio, 1986), we can prove the existence of the optimal measure in
the new set Q.

3. First approximation

The problem (18)-(19) is an infinite dimensional linear programming
(LP) problem, because all of the functionals in (18)-(19) are linear in
the variable x, and furthermore, the measure x is required to be

positive. We note that this is true even if the original problem is
nonlinear, linearity in the present sense was gained by the
consideration of admissible pairs as positive measures on Q. Of
course, it is an infinite dimensional LP problem, because M " (Q) is

infinite dimensional space. It is possible to approximate the solution
of this problem by the solution of a finite- dimensional LP of
sufficiently large dimension. Also, from the solution of this new finite
dimensional LP we induce an approximated admissible pair in a
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suitable manner. We shall first develop an intermediate problem, still
infinite-dimensional by considering the minimization (18); not over

the set O but over a subset of M " (Q) with only a finite numbers of
the constraints in (19) being satisfied. This will be achieved by
choosing countable sets of functions whose linear combinations are
dense in the set O, and then selecting a finite number of them.
Consider the first set of equalities in (19). Let the set {¢.,i =1,2,...}
be such that the linear combinations of the functions ¢ € C'(B) are
uniformly dense in C'(B). For instance, these functions can be taken

to be monomials in the components of the n-vectors x.
If in the second stage, w,'s are chosen as below:
sin[27rt/ ot], 1—cos[2mt/ot], r=12,... (20)
where ot =T, as in the next section, then the problem is converted to
a non-linear programming (NLP). Since the solution of the NLP
problem is difficult by our disposal, we would define y,'s such that

the problem be an LP problem. By using controllability we consider
t, such (as we assumed) that 0 < ¢, <7 and define:

V(D)= {sin[27zrt/§t] t<t,
' 0 otherwise
or
(21)
1 —cos[27rt/ o] t<t,

0 otherwise

v, (2) ={

where &t =¢, and r=1.2,... .

4. Secound approximation
The first approximation will be completed by using above subjects
and the following proposition.

We mention that f£(¢)'s and w(¢)'s are special cases of function ¢

that depend only ¢, then:
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Proposition 1: Consider the linear program consisting of the
minimizing function x — p(l) over the set O, of measures in

M™(Q) satisfying:
ulg?)=0p.b=12,...M
y(n(i)):o , i=o1, ., p—1,
ulsn)=..
then 4, =inf,,, (1) tendsto A =inf, (1) as M — o .
Proof:
(a) Exists & such that 4, tendsto & as M — oo :
We know that:
020,020,220,
A< << A, S A,
(A,)3— 1s non decresing and bounded sequence then converges to a
number & such that £< A4 .
(b) ¢=4:
set R=(1},,0,, then R>Q and &=inf, u(1). We show that
RcQ:
if © € R, then:
H(@*) =09,V eC'(B):
We have u(¢*) =09,V e spanig,,b=12,..}, since there is the
sequence (¢,) € C'(B)such that S,,S, and S, tend to zero as k —

where:

Sl =Ssup ¢t(t’x)_¢k, (tax)
8., )~ 4, (&%)

S3 = Sup‘¢(t7 X) - ¢k (t’ X)

S, =sup

then
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() — 54| =|pu(p*) — 5 — () + 54, | =
U{¢x(t,x) — (t,x)k(t,x,u) +[4,(t,x) = ¢, (. X)]}du — (54— 54,)

&, sup $.(t.%) — g, (£.3)|+ suplp(t.x) - ¢ (¢,%)| =

<

¢z (t,X) - ¢k, (Z,X)‘ + @, Sup
a8, +a,S, +5;,

where Q=JxAxU,¢, :JQg(t,x,u) dy and «, :jQ du.

Since the right-hand side of the above inequality tends to zero as
k — oo, while left-hand side is independent of k, therefore:

p(g*) =69,V ¢ € C'(B)
Thus if g€ R, then it is also in Q, from which £< A, and the
contention of the proposition follows. O

Proposition 2: The measure x° in the set Q,, at which the function
L — (1) attains its minimum has the form:

w =3 aioly;) 22)

v, €Qand o, 20,k=1,2,...,M, and5(.) is unitary atomic measure

with the support being the singleton set {yk }, characterized by:

OWNF)=F(y),yeQ..

Proof: similar to Proposition III.3 in (Heydari, ef al., 2001).
This structural result points the way towards a nonlinear problem in

which the unknowns are the coefficients «, and supports
bibk=12,...M.

To change this problem to an LP, we use another approximation. If
" is a countable dense subset of Q, we can approximate u* by a

measure v € M " (Q) such that:

V:ia;ﬁ(ﬂc)

k=1
Where y, € 0" = {yl,yz,...,yN} [Proposition III.3 of (Rubio, 1986)].
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This result suggests the following LP problem:
Given £>0 and y, ew",k=12,..., N,

N
Minimize z a, (23)
k=1
Subject to:

N
Zak¢bg(yk)_5¢b SS, bzla 29 BMla
k=1

N -
Zakl//rj(ykigé‘, . J 1,2,....,n

<g, s=1,2,-,L, (24)

a,20,k=1,2,---,N.
Assume P(M)° in R" shows the set (a,a,,...,a,) where
a, 20, k=1 2,.--,N satisfies (24), then by Theorem III.1 of
(Rubio, 1986), for every &>0 the problem of minimizing the

functional (23) on the set P(M)° has a solution for N = N(¢g)
sufficiently large, and the solution satisfies

N
ﬂ,M+p(8)SZajS/IM+8
j=1
where p(¢) >0 as ¢ > 0.

Let 8, e C'(F),
O.(t,x,u)=t",r=0,1,... (25)
then the set of 6.'s is dense in C'(F). Assume that there are L of

: M, :
them in the set {¢ig }, . - It 1s necessary to choose L number of functions

of the time only, to replace the functions 6 ,» =0,1,... which were not
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found suitable, so we have chosen some suitable functions, to be
denoted by f,,s=12,...,L , as follows:

(o) {1 ted, |
0 otherwisc
where J, =((s-1d,sd),d=t¢t,/(L-1),s=12,...,L-1, and
J, =(¢t,,T). Since every continuous function can be written as a
linear combination of monomials of the type 1, x,x>,... , we assume,
G =X,0,=%Xp,...,0 =X,
o =51 2By =X35ny, =X,

until M, functions are chosen. Also assume for r =1,2,...,M 2

sin2zrt/t,] t<t,
v, (1)= -
0 otherwise
and for r=M, +LM, +2,....2M, ,

1—cos[2mt/t,] 1<t
v, (0)= {O otherwise
then we have M, =2nM, .

Now, if in the problem (23)-(24), ¢ >0, N=N,xN_xN,_, where
N, and N_and N, are the umbers of partitions on the #, x and u axes
respectively, and y, =(¢,,x,,u;) € ®",j=12,...,N, then we have the
following LP problem:

Minimize i a, (26)
k=1

Subject to:
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ak¢f(yk):5¢br b:L 2’ ’Mlﬂ

j=12,....n

a,y’ =0,
W OO=0 M /n

af.(y)=a, s=12,--,L, (27)
1

akn(i)(yk):()a i:L 2:"':p_1

M= Il1= IM= 1= I[ M=

aksn(yk) = Oa

>~
1l

1

a, 20, k=1,2,---, N ,
where a_ 1s the integral of f, on J. By the solution of this finite
dimensional LP problem we obtain the nearly optimal «"'s.

The procedure to construct a piecewise construct control function

approximating the action of the optimal measure is based on the
analysis in Rubio (Rubio, 1986).

5. Numerical examples

We have estimated the solution of some time optimal control
problems with bounded state by using the techniques developed here.
Before presenting the result, it necessary to make several comments:

(1) The intervals 4 and U are chosen appropriate such that all the
problems are controllable.

(ii) The Time interval J is chosen as J =[0,T] in all cases.

(iii) The sets of the form @" ={y,,k =1,2,...,N} were constructed by

dividing the appropriate intervals into a number of subintervals,
defining in this way a grid of points. We found it is necessary to
change these grids according to each problem.

(iv) The number of constraints M, , M, and L, are chosen sufficiently
large.
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(v) The solution of the linear program (26)—(27) were estimated by
means of a home — made revised simplex method.

Example 1. Minimize J =T
subject to

X, =X, x,(0)=0, x,(T)=0.5,
X,=u, x,(0)=x,(T)==0
We divided the sets J=[0,T], 4 =[-1,0.5], 4, =[-1, 0.5] and

U=[-1,1]
respectively into p, =10 , and p, = p, = p, =5 subintervals. Then
the set Q 1is divided into N = 1250 cells, and y, =(z,,x,,u,) belongs
to the kth cell, we have chosen M| =4,M,=8,L=10,and ¢, = 1.
In this example after 59 iterations the Optimal Time converges to the

value T" =1.4286, while the exact optimal time is /2 (see Pinch,
1995). The graphs of the piecewise constant control function and
trajectory are as follows (Fig. 1):

1 - - 0.15
05 - 01}
ul. _
) — x1(.)
005t
05
_1 " _- . |:| . L
0 05 1 15 0 0.5 1 1.5

Figure 1 - Optimal Control and State

Example 2. (see Balachanran, 1999) Minimize J=T subject to the
nonlinear system of equation:
x1=X2, xl(T):Oa

*, = %u sec(xf ) , (1)=0
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We divided the sets J:[O,T],Alz[—o.s,o],Azz[—,/fy,0},

U=[-L1] respectively 1into p, =5 ,and p,=pP,=p, =95
subintervals. Then the set Q is divided into N =5*+1 cells, and
v, =(t,,x,,u,) belongs to the kth cell, and M,=2,M, =8, and
L =35, and we consider ¢, =0.2.

In this example after 22 iterations the Optimal Time converges to
the value 7 =0.36.The graphs of the piecewise constant control
function and trajectory are as follows (Fig. 2).

0.01 : 1
X1(.) nasf —
L)
0.005} ] Ot
05}
0 - -1 |
0 0.2 0.4 0 0.2 0.4

Figure 2 - Optimal Control State
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